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Abstract. For a locally finite, connected graph Γ, let Map(Γ) denote the

group of proper homotopy equivalences of Γ up to proper homotopy. Excluding

sporadic cases, we show Aut(S(MΓ)) ∼= Map(Γ), where S(MΓ) is the sphere
complex of the doubled handlebody MΓ associated to Γ. We also construct an

exhaustion of S(MΓ) by finite strongly rigid sets when Γ has finite rank and

finitely many rays, and an appropriate generalization otherwise.

1. Introduction

Let Γ be a locally finite, connected graph, and let Map(Γ) denote its mapping
class group, defined by Algom-Kfir–Bestvina to be the group of proper homotopy
equivalences of Γ up to proper homotopy. Let MΓ denote the doubled handlebody
associated to Γ (see Definition 2.3). We prove in that the sphere complex S(MΓ)
(see Definition 2.4) satisfies an Ivanov-type theorem.

Theorem 1.1. Let Γ,Γ′ be two locally finite connected graphs. Suppose f : S(MΓ)→
S(MΓ′) is an isomorphism. Then f is induced by a diffeomorphism h :MΓ →MΓ′ .
In particular, (i) Γ and Γ′ are proper homotopy equivalent and (ii) when Γ is not
a graph of rank r with s rays such that 2r + s < 4 or (r, s) ∈ {(0, 4), (2, 0)},
Aut(S(MΓ)) ∼= Map(Γ) as topological groups.

Our proof adapts an observation from Bavard–Dowdall–Rafi [BDR20] that the
link of a sphere system σ ⊂ S(MΓ) is isomorphic to the join of the S(Mi) for com-
ponents Mi ⊂MΓ \ σ. For a maximal sphere system σ, we obtain an isomorphism
of dual graphs ∆σ → ∆fσ from which we construct the diffeomorphism h.

In addition, we generalize the results of Bering–Leininger [BL24a] to S(MΓ).

Theorem 1.2. Suppose Γ has rank r and s rays such that 6 ≤ 2r + s <∞. Then
there exists an exhaustion of S(MΓ) by finite strongly rigid subcomplexes.

From Theorem 1.2 and techniques from [BDR20], we obtain another proof of Theo-
rem 1.1. Finally, we extend Theorem 1.2 to the infinite-type setting using techniques
from the first proof of Theorem 1.1. We say a graph Γ is of infinite-type if it is
not proper homotopy equivalent to a finite rank graph with finitely many ends.

Theorem 1.3. For Γ infinite-type, there exists an exhaustion of S(MΓ) by topo-
logically locally finite subcomplexes that are strongly rigid over maximal maps.

A subcomplex X ⊂ S(MΓ) is strongly rigid (resp. over maximal maps) if
any locally injective simplicial map X → S(Mn,s) (resp. preserving the maximality
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of sphere systems) extends uniquely to an automorphism of S(MΓ). The subcom-
plex X is topologically locally finite if every compact set K ⊂ MΓ intersects
finitely many vertices of X.

1.1. Motivation. Recall that Out(Fn) is the group of outer automorphisms of
the free group Fn, defined as Out(Fn) := Aut(Fn)/ Inn(Fn). From a topological
perspective, Out(Fn) can be thought of as

Out(Fn) = {homotopy equivalences Γ→ Γ } / homotopy

where Γ is a finite graph of rank n (see [Hat02, Proposition 1B.9]). There is a rich
dictionary between mapping class groups of surfaces, Map(S), and Out(Fn) (see
[BD19]). Analogies between the two include:

Map(S) ←→ Out(Fn)
Teich(S) ←→ Outer space, CVn

curve complex ←→

{
sphere complex
free factor complex
free splitting complex

Within the last decade, there has been a surge of interest in big mapping class
groups of surfaces, that is, Map(S) for a surface S whose fundamental group is not
finitely generated. Motivated by the parallels between graphs and surfaces, a natu-
ral question is: what is the big version of Out(Fn)? Generalizing the interpretation
of Out(Fn) as homotopy equivalences of a graph up to homotopy, [AB21] propose
the definition of the mapping class group of a locally finite, infinite graph Γ to be:

Map(Γ) := {proper homotopy equivalences Γ→ Γ}/proper homotopy.

The group Map(Γ) is sometimes referred to as “big Out(Fn).” When Γ is a finite
graph of rank n, these definitions coincide: Out(Fn) ∼= Map(Γ). [AB21, DHK23a,
DHK23b, Uda24] have demonstrated that Map(Γ) exhibits many similarities with
big mapping class groups of surfaces.

The curve complex C(S) is one of the most important tools for studying mapping
class groups of surfaces. A celebrated theorem of Ivanov states that Aut(C(S)) ∼=
Map±(S), illustrating an underlying connection between the curve complex and
the surface mapping class group [Iva97, Luo99]. Ivanov’s theorem has inspired
a broader metaconjecture: “every object naturally associated to a surface S and
possessing a sufficiently rich structure has Map±(S) as its group of automorphisms”
[Iva06]. There have been many subsequent results supporting this metaconjecture
(see [BM19] for further discussion).

When S is an infinite-type surface, the curve complex is geometrically uninterest-
ing (it has diameter 2); however, it is sufficiently rich combinatorially that Ivanov’s
theorem still holds [HMV18, BDR20]. The aim of this project is to introduce a
complex that plays a similar role in the setting of big Out(Fn). Specifically, we will
show that the sphere complex of a 3-manifold associated to a locally finite graph
Γ, denoted by S(MΓ), satisfies an analog of Ivanov’s theorem (see Theorem 1.1).
When Γ has rank zero, Map(Γ) ∼= Homeo(Ends(Γ)) and Theorem 1.1 coincides
with a recent result of Branman–Lyman, who show the homeomorphism group of a
Stone space is isomorphic to the automorphism group of its complex of cuts [BL24b,
Theorem A]. Our proofs provide an alternate perspective on this result.

Bavard–Dowdall–Rafi [BDR20] ultimately apply Ivanov’s theorem to prove al-
gebraic rigidity of the mapping class groups of infinite-type surfaces, showing that
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two infinite-type surfaces S and S′ are homeomorphic if and only if Map±(S) ∼=
Map±(S′). In contrast, algebraic rigidity fails in general for locally finite infinite
graphs, though all known examples are when both graphs are trees. For example,
if Γ has end space a Cantor set, and Γ′ has end space a Cantor set with one extra
isolated point, then Map(Γ) ∼= Map(Γ′) (see Theorem 2.1). A natural next question
asks what conditions are needed to guarantee algebraic rigidity in the big Out(Fn)
setting.

1.2. Outline of paper. In Section 2, we define the sphere complex of the doubled
handlebody associated to a locally finite infinite graph Γ, discuss some general tools
for studying spheres in 3-manifolds, and recall relevant results from [BL24a]. In
Section 3, we prove Theorem 1.1 by first showing that sphere graph isomorphisms
induce isomorphisms of the dual graphs of pants decompositions of the doubled
handlebody MΓ. These graph isomorphisms define diffeomorphisms of MΓ, which
are compatible with pants decompositions that differ by a flip move. In Section 4
we generalize the results of [BL24a] to finite-type doubled handlebodies with S2

boundaries by proving Theorem 1.2, with the aim of giving an alternative proof
of Theorem 1.1 in Section 5 in the style of [BDR20]. In Section 6 we prove The-
orem 1.3, generalizing a finite-type result of [BL24a]. Finally, in Section 7, we
consider the existence of finite rigid sets in the low complexity cases not covered by
Theorem 1.2.
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2. Preliminaries

Let Γ be a locally finite graph. A proper map f : Γ→ Γ is a proper homotopy
equivalence if there exists a proper map g : Γ → Γ such that fg and gf are
properly homotopic to the identity.

We denote by Ends(Γ) the (Freudenthal) end space of Γ. We recall that given
a compact exhaustion K1 ⊂ K2 ⊂ . . . of Γ, with maps π0(Γ \ Ki) → π0(Γ \
Ki−1) induced by inclusion, Ends(Γ) is the inverse limit lim←−i

π0(Γ \Ki). Like for

surfaces, ends of graphs come in two flavors: those accumulated by loops (also
called unstable) and those that are not accumulated by loops (also called stable
ends). Heuristically, if you always see loops as you move out toward an end, then
it is accumulated by loops. The (possibly empty) subset of all ends accumulated
by loops is a closed subset of Ends(Γ), denoted Endsℓ(Γ).

The rank and end space classify locally finite, infinite graphs up to proper ho-
motopy equivalence.
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Theorem 2.1 ([ADMQ90]). Let Γ and Γ′ be two locally finite, infinite graphs.
Then Γ is properly homotopy equivalent to Γ′ if and only if

(rk(Γ),Ends(Γ),Endsℓ(Γ)) ∼= (rk(Γ′),Ends(Γ′),Endsℓ(Γ
′)).

By “ ∼=” we mean that rk(Γ) = rk(Γ′) and there exists a homeomorphism of pairs f :
(Ends(Γ),Endsℓ(Γ))→ (Ends(Γ),Endsℓ(Γ)). The tuple (rk(Γ),Ends(Γ),Endsℓ(Γ))
is called the charateristic triple.

Let PHE(Γ) denote the group of proper homotopy equivalences of Γ, equipped
with the compact-open topology.

Definition 2.2. The mapping class group of Γ, denoted Map(Γ), is defined as

Map(Γ) := PHE(Γ)/proper homotopy.

Map(Γ) is a topological group with the quotient topology. Not every homotopy
equivalence of Γ that is proper is a proper homotopy equivalence as defined above
(see [AB21, Example 4.1]).

We now construct the doubled handlebody associated to Γ, whose study will be
the main focus of this paper.

Definition 2.3. Let NΓ be the 3-manifold with 0-handles and 1-handles glued
according to the vertices and edges, respectively, in Γ. The doubled handlebody
MΓ associated to Γ is the double of NΓ, obtained by gluing two copies of NΓ

along ∂NΓ.

One can think of NΓ as a regular neighborhood of the image of a proper embed-
ding of Γ in R3 (see Figure 1). When Γ is finite of rank n, MΓ

∼= #n(S
2 × S1), the

connect sum of n copies of S2 × S1. Let Mn,s denote #n(S
2 × S1) with s disjoint

open balls removed; note that Mn,s \ ∂Mn,s
∼=MΓ for Γ rank n with s rays.

. . . . . .

Γ

NΓ

NΓ

. . .

. . .

MΓ

. . .

. . .

Figure 1. The construction of MΓ for the ladder graph. Disk
cross-sections in distinct copies of NΓ form hemispheres of a 2-
sphere in MΓ.

As usual, we define the mapping class group of MΓ to be

Map(MΓ) = Diff+(MΓ)/isotopy

where Diff+(MΓ) denotes the orientation preserving diffeomorphisms of MΓ.

Remark. We will generally work in the smooth category: submanifolds are assumed
to be smoothly embedded, and homotopies and isotopies are smooth.
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2.1. Spheres in 3-manifolds. The sphere complex on MΓ is analogous to the
curve complex on surfaces. An embedded sphere in a 3-manifold M is essential
if it does not bound a ball and is not peripheral, i.e. not isotopic into a small
neighborhood of a boundary sphere or puncture of M .

Definition 2.4. The sphere complex associated with a 3-manifoldM is denoted
by S(M). It is a simplicial complex with

• vertices corresponding to isotopy classes of essential embedded 2-spheres
in M ;
• k-cells spanned by vertices a0, . . . , ak if these spheres can be isotoped to
be pairwise disjoint.

We equip the automorphism group Aut(S(MΓ)) of S(MΓ) with the permuta-
tion topology. This topology is defined by the subbasis {Ua} at the identity,
where a ranges over the vertices of S(MΓ) and

Ua = {ϕ ∈ Aut(S(MΓ)) | ϕ(a) = a}.
Note that Map(MΓ) acts naturally on S(MΓ), as Diff+(MΓ) acts on the collec-

tion of essential embedded spheres of MΓ, preserving disjointness between pairs of
spheres. We have the following from [Uda24], which is the first step in proving
Theorem 1.1:

Theorem 2.5 ([Uda24, Theorem 1.1]). There is a surjective continuous map
Ψ : Map(MΓ) → Map(Γ) with ker(Ψ) contained in the kernel K of the action
of Map(MΓ) on S(MΓ), hence inducing an action of Map(Γ) on S(MΓ). If Γ is
not a graph with rank r and s rays such that 2r + s < 4 or (r, s) ∈ {(0, 4), (2, 0)},
then K = ker(Ψ) and the induced action is faithful.

In the next two sections, we present tools used to characterize the links of sim-
plices in S(MΓ). In particular, we give a method for constructing intersecting
spheres and describe certain full subcomplexes of links.

2.1.1. Intersecting spheres. Henceforth, let M be an oriented 3-manifold. A sub-
manifold N is essential if it is not null-homotopic or peripheral, and we say two
submanifolds intersect essentially if they cannot be made disjoint up to homo-
topy. Given transverse oriented submanifolds S, T ⊂ M of complementary dimen-
sion, the signed intersection number of S and T is the sum

ι̂(S, T ) :=
∑

x∈S∩T

ϵ(x)

where ϵ(x) = ±1 according to the orientation induced by S, T and M . The signed
intersection number ι̂ is invariant up to homotopy in the following sense:

Lemma 2.6. Let S ⊂ M be an oriented submanifold and T an oriented manifold
such that dimS + dimT = dimM . Let Ψ : I × T → M be a homotopy transverse
to S such that Ψ−1(S) is compact and Ψ(I × ∂T ) ∩ S = Ψ(I × T ) ∩ ∂S = ∅.
Let ψt(x) = Ψ(t, x). If ψ0, ψ1 are embeddings transverse to S, then ι̂(ψ0(T ), S) =
ι̂(ψ1(T ), S).

Proof. Fix the usual orientation for I and endow I×T with the product orientation.
Z = Ψ−1(S) is then an oriented compact 1-manifold with (oriented) boundary
−ψ−1

0 (S) ⊔ ψ−1
1 (S). In particular, ι̂(ψ−1

1 (S), Z) − ι̂(ψ−1
0 (S), Z) = ι̂(∂Z,Z) = 0,

from which the claim follows. □
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By [Lau73], if two essential spheres in M are homotopic, then they are isotopic,
and this isotopy extends to an ambient isotopy of M \ ∂M . In particular, if two
spheres are disjoint up to homotopy, then there exists an isotopy of one sphere
realizing their disjointness. Likewise, if a sphere and an arc are disjoint up to
homotopy, then we may homotope the arc (rel ends) to be disjoint.

Corollary 2.7. Let a ⊂ M \ ∂M be an embedded non-peripheral sphere and γ ⊂
M a transverse simple arc. If ι̂(a, γ) ̸= 0, then a, γ are essential and intersect
essentially.

Proof. By the above, if a, γ do not intersect essentially, then there exists some
arc γ′ homotopic to γ (rel ends) and disjoint from a. In fact, γ′ is then properly
homotopic to γ, and up to a small homotopy leaving ι̂ unchanged we assume this
homotopy is transverse to a. As a is compact and disjoint from ∂M , we satisfy the
hypotheses of Lemma 2.6, and ι̂(a, γ) = ι̂(a, γ′) = 0. □

Lemma 2.8. Let a ⊂M \∂M be a non-peripheral sphere and let γ be a simple arc
between distinct punctures. Let b ∼= S2 be the boundary of a regular neighborhood
of γ. If γ intersects a essentially, then b must also intersect a essentially.

Proof. We prove the contrapositive. Suppose that a, b do not intersect essentially.
Then a is isotopic to a sphere a′ disjoint from b. Let M ′ ⊔M ′′ = M \ b; M ′ is
disjoint from γ and M ′′ is a thrice-punctured 3-sphere. If a′ ⊂ M ′ then a does
not intersect γ essentially. If a′ ⊂ M ′′, then a′ is peripheral in M ′′; since a is not
peripheral in M , a′ is homotopic to b which is disjoint from γ. □

2.1.2. Full subcomplexes of S(MΓ). A sphere system is a (possibly infinite) collec-
tion of distinct pairwise disjoint essential spheres. We show that the sphere complex
of a submanifold obtained by cutting along a sphere system is a full subcomplex of
S(MΓ):

Proposition 2.9. Let Z ⊂ MΓ \ σ be a complementary component of a sphere
system σ. Then Z ↪→MΓ induces an injective full simplicial map S(Z) ↪→ S(MΓ).

The proof of Proposition 2.9 will make use of the following lemma and two results
of [Hat95].

Lemma 2.10. Z ↪→ MΓ is π2-injective. In particular, any essential sphere in Z
is essential in MΓ.

Proof. Let p : M̃Γ → MΓ be the universal covering of MΓ and fix Z̃ ⊂ M̃Γ a
connected component of p−1(Z); observe Z̃ is a complementary component of the

sphere system σ̃ = p−1(σ). We show the inclusion Z̃ ↪→ M̃Γ is π2-injective and pre-
serves essentiality, which suffices: two spheres are homotopic if and only if they have
a pair of homotopic lifts, and neighborhoods of punctures lift homeomorphically.

An application of van Kampen’s theorem shows that Z is π1-injective, hence Z̃
is simply connected. The pair (M̃Γ, Z̃) induces the exact sequence

H3(M̃Γ, Z̃)→ H2(Z̃)
ι♮−→ H2(M̃Γ) ;

since each component of M̃Γ\Z̃ is non-compact, H3(M̃Γ, Z̃) ∼= H3(M̃Γ\Z̃, ∂Z̃) = 0.

Hence ι♮, which is induced by the inclusion ι : Z̃ ↪→ M̃Γ, is injective. Since Z̃, M̃Γ are

simply connected, the Hurewicz (natural) isomorphism implies that ι∗ : π2(Z̃) →
π2(M̃Γ) is likewise injective. It follows that two spheres a, a′ ⊂ Z̃ are homotopic in
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M̃Γ only if they are likewise in Z̃, and in particular a ⊂ Z̃ is null-homotopic in M̃Γ

only if it is likewise in Z̃. Extending along paths to a basepoint z0 ∈ Z̃, we obtain
homotopic based spheres ā, ā′ ⊂ M̃Γ also homotopic to a, a′ respectively. Since M̃Γ

is simply connected, ā, ā′ can be chosen to be homotopic to a, a′ via homotopies in
Z̃, and π2-injectivity implies that ā, ā′ are homotopic in Z̃ as well.

It remains to show that if a ⊂ Z̃ is peripheral in M̃Γ, then it is null-homotopic
or peripheral in Z̃. Suppose that a is peripheral to an (isolated) puncture e ∈
Ends(M̃Γ). If e ∈ Ends(Z̃), then a is peripheral in Z̃. Else, let M+ be obtained

by replacing a neighborhood of e disjoint from Z̃ with a ball and σ+ ⊂ M+ by
removing components (in fact, at most one) of σ̃ peripheral inM+. Then Z̃ ↪→M+

is isotopic to a component of M+ \ σ+, hence π2-injective by the above: since a is

null-homotopic in M+, it is also null-homotopic in Z̃. □

We briefly review Hatcher normal form. Given a maximal sphere system σ ⊂
M ∼=Mn,s and a transverse sphere a ⊂M , a is in normal form with σ if either a
is equal to a component of σ or if (the closure of) each component of a \ σ meets
each sphere in σ at most once and no component is homotopic rel boundary to a
disk in σ. The intersection of a with the closure of a component of M \ σ is called
a piece of a.

Proposition 2.11 ([Hat95, Proposition 1.1]). Let a ⊂Mn,s be an essential sphere
and σ ⊂ Mn,s a maximal sphere system. Then a is homotopic to a sphere a′ in
normal position with σ, and if a ∩ σ0 = ∅ for some subsystem σ0 ⊂ σ, then there
exists a homotopy disjoint from σ0.

Remark. Our statement is slightly stronger than that in [Hat95], but immediate
from the construction in its proof.

Proposition 2.12 ([Hat95, Proposition 1.2]). Let a, a′ ⊂Mn,s be essential homo-
topic spheres in normal form with a maximal sphere system σ ⊂ Mn,s. Then a, a′

are homotopic via a homotopy which restricts to an isotopy on intersections with
each sphere in σ.

Proof of Proposition 2.9. The map is well defined by Lemma 2.10: a sphere is es-
sential in Z only if it is essential in MΓ. To show injectivity, we verify that two
spheres in Z are isotopic in MΓ only if they likewise are in Z (n.b. π2-injectivity
is insufficient since MΓ is not simply connected). To show fullness, we prove that
two spheres intersect essentially in Z only if they likewise do in MΓ; the converse
is immediate, implying that the map is simplicial.

First suppose that a, b ⊂ MΓ \ σ are essential spheres homotopic in MΓ, and
fix some N ∼= Mn,s ⊂ MΓ containing the image of the homotopy such that the
components of ∂N are essential spheres disjoint from σ. Let σ′ ⊃ {b} ∪ σ be a
maximal sphere system on N . By Proposition 2.11, a is homotopic to some a′ in
normal form with σ′ disjointly from σ; since b is likewise in normal form with σ′,
disjoint from σ, and homotopic with a (hence a′), a′, b are homotopic disjoint from
σ by Proposition 2.12. Then, a, b are likewise homotopic disjointly from σ.

If a, b ⊂ Z are essential spheres homotopic in MΓ, then they are disjoint from
σ and thus homotopic in Z by the above. If instead a, b ⊂ Z are essential spheres
that do not intersect essentially in MΓ, then fix an embedded sphere a′ homotopic
to a in MΓ and simultaneously disjoint from b, σ. Again by the above, a, a′ are
homotopic in Z and hence a, b do not intersect essentially in Z. □
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Remark 2.13. The image of S(Z) in Proposition 2.9 is exactly the subcomplex in
S(MΓ) spanned by spheres in link(σ) ⊂ S(MΓ) contained in Z. We show that a
sphere a ∈ link(σ) contained in Z is essential in Z, which suffices. If a ⊂ Z is not
essential in Z, then a bounds a ball in Z thus likewise in MΓ, or a is peripheral in
Z hence either a ∈ σ or it is peripheral in MΓ: in all cases, a /∈ link(σ).

Corollary 2.14. Let Zi ⊂ MΓ \ σ denote the complementary components of a
sphere system σ. Then link(σ) is isomorphic to the join ∗i S(Zi).

Proof. By Remark 2.13, it suffices to show that the S(Zi) have pairwise disjoint
images in link(σ). Suppose that a ∈ link(σ) is in the image of S(Zi) and S(Zj),
hence we may fix homotopic representatives α ⊂ Zi and α

′ ⊂ Zj . As in the proof
of Proposition 2.9 we obtain a homotopy between α, α′ disjoint from σ, hence α, α′

lie in the same complementary component of σ and Zi = Zj . □

2.1.3. Pants decompositions and M0,s. We now shift our focus and introduce the
tools we will need to prove Theorem 1.2. The proof relies on a generalization of
the results of Bering–Leininger in [BL24a], which we will discuss in Section 4. We
state here the relevant preliminary definitions and results from [BL24a].

Definition 2.15. Any manifold homeomorphic toM0,3 is called a pair of pants. A

maximal sphere system P ⊂ S(Mn,s)
(0) is called a pants decomposition. Fixing

an open regular neighborhood nbd(P ) ⊃ P , each component of Mn,s \ nbd(P ) is
homeomorphic to a pair of pants.

Definition 2.16. Suppose P is a pants decomposition of Mn,s. Two spheres a, b ∈
P are adjacent in P if they are two of the boundary spheres of some pair of pants
component of Mn,s \ P . A sphere a ∈ P is self-adjacent in P if it bounds two
cuffs of a single pair of pants in Mn,s \ P .

Definition 2.17. Let Pa be a pants decomposition containing a sphere a that is
not self-adjacent. Consider the connected component of Mn,s \ nbd(Pa \ a) con-
taining a. This is homeomorphic to M0,4, and S(M0,4) = { a, a′, a′′ }. There are
pants decompositions Pa′ = Pa \ { a } ∪ a′ and similarly Pa′′ . A change in pants
decomposition from Pa 7→ Pa′ or Pa 7→ Pa′′ is called a flip move. See Figure 2.

Definition 2.18 ([BL24a, Definition 2.2]). Let X ⊂ S(Mn,s) be a subcomplex.

Two spheres a, a′ ∈ X(0) which intersect essentially have X-detectable intersec-
tion if there are pants decompositions Pa, P

′
a ⊂ X(0) such that Pa, Pa′ differ by a

flip move a→ a′, i.e. for which a ∈ Pa, a
′ ∈ Pa′ and Pa \ {a} = Pa′ \ {a′}.

Since Pa, Pa′ differ by a flip move a→ a′, the component of Mn,s \nbd(Pa \{a})
containing a ∪ a′ deformation retracts to a ∪ a′ and is homeomorphic to M0,4 (see
Figure 2). If a, a′ has an intersection X-detectable, then they intersect essentially:
we apply Proposition 2.9 to M0,4 \ ∂M0,4 ↪→Mn,s \ ∂Mn,s.

We will consider locally injective simplicial maps f : X → S(Mn,s), where X is
a subcomplex of S(Mn,s). The map f is simplicial if it sends vertices to vertices
and edges to edges, and locally injective if it is injective when restricted to the
stars of vertices in X.

Lemma 2.19 ([BL24a, Lemma 8]). Let X ⊂ S(Mn,s) be a subcomplex, and suppose

f : X → S(Mn,s) is a locally injective simplicial map. If a, a′ ∈ X(0) have X-
detectable intersection, then f(a) and f(a′) have f(X)-detectable intersection.
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a′′

a′a
1 2

3 4

Figure 2. The three spheres a, a′, and a′′ in M0,4 differ by a flip
move. ∂M0,4 is labeled 1–4.

The following two results discuss the sphere graph of M0,s.

Lemma 2.20 ([BL24a, Lemma 9]). A sphere a ∈ S(M0,s)
(0) is determined by the

partition of ∂M0,s induced by the connected components of M0,s \ a.

Lemma 2.21 ([BL24a, Corollary 11]). If N ∼= M0,s
∼= N ′ and f : S(N) → S(N ′)

is a simplicial automorphism, then there is a homeomorphism h : N → N ′ so that
h(a) = f(a) for every a ∈ S(N).

The following lemma provides a useful topological criterion to distinguish spheres
combinatorially.

Lemma 2.22 ([BL24a, Lemma 12]). Suppose a, b, c ∈ S(Mn,s) are such that b and
c are disjoint and a essentially intersects b and c, each in one circle, such that
the boundary components of nbd(a ∪ b ∪ c) are either essential or peripheral. Let
b′ ∈ S(nbd(a ∪ b)) be the unique sphere in nbd(a ∪ b) distinct from a and b and
c′ ∈ S(nbd(a ∪ c)) the unique sphere in nbd(a ∪ b) distinct from a and c. Then b′

and c′ intersect, and both intersect b and c.

We include a useful technical result, which is equivalent to the connectedness of
the pants graph for Mn,s. In particular, this proposition replaces the use of Outer
space in the proof of Proposition 22 in [BL24a].

Proposition 2.23. Any two pants decompositions in Mn,s differ by a finite se-
quence of flip moves.

Proof. FixMn,s with minimal dimension k = dimS(Mn,s) such that the proposition
does not hold: k > 0, else S(Mn,s) is empty or Mn,s is M1,1 or M0,4 and the claim
is immediate. Let S ′ denote the barycentric subdivision of S(Mn,s) and let S ′′
denote the barycentric subdivision of S(Mn,s)

(k−2). It is equivalent to show that
the subcomblex P = S ′ \ S ′′ is connected: in particular, any flip move corresponds
to moving between (the barycenters of) two k-simplices in S(Mn,s) via a (k −
1)-simplex. We claim that if two k-simplices in S(Mn,s) share a face then their
barycenters are in the same component of P, which suffices. In particular any
simplex in S(Mn,s) is the face of a k-simplex, hence any path in S ′ gives a sequence
of k-simplices Pi with Pi ∩ Pi+1 ̸= ∅. Since k > 0, S(Mn,s) and S ′ are connected,
hence by the claim P is connected.

Suppose that P, P ′ are k-simplices with non-empty intersection σ = P ∩ P ′.
Let Ni denote the non-pants components of Mn,s \ σ. Since σ is non-empty and
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each S(Ni) is a full subcomplex of S(Mn,s), dim(S(Ni)) < k. By minimality we
may choose a sequence of flip moves in Ni between P ∩Ni and P

′ ∩Ni for each i;
concatenating these sequences gives a path between P, P ′ in P. □

2.2. Edge isomorphisms and rigidity. In this subsection, we state a version of
Whitney’s graph isomorphism theorem which will be useful in Section 3. Let ∆,∆′

denote graphs, possibly with loops and multiple edges between vertices.

Definition 2.24. A bijection ψ : E(∆) → E(∆′) is an edge isomorphism if for
all e, e′ ∈ E(∆), there is an isomorphism of subgraphs e∪e′ → ψ(e)∪ψ(e′) inducing
ψ|{e,e′}.

Definition 2.25. Given a map ψ : E(∆) → E(∆′) and graphs G,G′, ψ has a
G,G′-pair if, for some η ⊂ E(∆), the subgraphs

⋃
e∈η e,

⋃
e∈η ψ(e) are isomorphic

to G,G′, in any order.

Let K3 denote the 3-clique and K1,3 the 3-star. The following theorem is imme-
diate from [Gar84, e.g. Corollary 2.2].

Theorem 2.26 (Gardner). Suppose ∆,∆′ are finite. An edge isomorphism ψ :
E(∆) → E(∆′) is induced by an isomorphism ∆ → ∆′ if and only if ψ does not
have a K3,K1,3-pair.

Remark. If ∆ is connected and |∆| ≠ 2, then a unique graph isomorphism induces
ψ. In particular, if ψ′ were another such then ψ−1ψ′ is the identity on edges, which
implies identity unless ∆ consists of two vertices with edges only between them.

Corollary 2.27. Theorem 2.26 likewise holds if ∆,∆′ are infinite and ∆ is con-
nected with |∆| ≠ 2.

Proof. Fix a compact exhaustion of ∆ by connected subgraphs ∆i of order ni ̸= 2.
Let ∆′

i denote the subgraph
⋃

e∈E(∆i)
ψ(e); note that ∆′

i is likewise a compact

exhaustion of ∆′, since every e′ ∈ E(∆′) is the image of an edge e ∈ E(∆i) for
some i. Then ψ restricts to edge isomorphisms ψi : E(∆i) → E(∆′

i); if any has
a K3,K1,3-pair then so does ψ, hence it follows that ψi is induced by a unique

isomorphism ψ̃i : ∆i → ∆′
i. By uniqueness, these maps form a direct system, the

direct limit of which is an isomorphism ψ̃ : ∆→ ∆′ inducing ψ. □

As in the remark, we observe that the ψ̃ above is likewise unique.

3. A proof of the main theorem

We prove Theorem 1.1. We first show that a sphere graph isomorphism induces
an isomorphism between the dual graphs of a pants decomposition and its image,
which we will use to define the desired diffeomorphism of MΓ.

3.1. Dual graphs of pants decompositions. Henceforth, let f : S(MΓ)
∼−→

S(MΓ′) be an isomorphism of sphere graphs. Given a maximal sphere system σ ⊂
S(MΓ), fσ is likewise maximal and σ, fσ define pants decompositions of MΓ,MΓ′

respectively. Let ∆σ, ∆fσ denote the dual graphs to these pants decompositions.
For a sphere a ∈ σ, we denote by ea the dual edge in ∆σ. Thus E(∆σ) = {et : t ∈ σ}
and the restriction f |σ defines a bijection f |σ : E(∆σ)→ E(∆fσ).
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Lemma 3.1. f |σ is an edge isomorphism.

Proof. For any ea, eb ∈ E(∆σ), we must show there is an isomorphism on subgraphs
ea∪eb → efa∪efb for which ea 7→ efa and eb 7→ efb. By examining complementary
components and applying Corollary 2.14 we obtain the following:

(i) ea is a loop in ∆σ if and only if link(σ \ a) = {a} ∼= S(M1,1). Otherwise,
link(σ \ a) = {a, a′, a′′} ∼= S(M0,4) for some distinct a′, a′′.

(ii) ea, eb have common incident vertices (i.e. a, b are adjacent) in ∆σ if and only
if link(σ \ {a, b}) ∼= S(M1,2) or S(M0,5).

(iii) If ea, eb are adjacent in ∆σ and ea or eb is a loop, then they are incident on
exactly one common vertex. If ea, eb are not loops and incident on exactly one
common vertex, then link(σ \ {a, b}) = S(M0,5). If they are incident on two
common vertices (i.e. they form a bigon), then link(σ \ {a, b}) = S(M1,2).

These properties are sufficient to determine ea ∪ eb up to order preserving iso-
morphism. Moreover, since (i)-(iii) are specified combinatorially (because links are
preserved by isomorphisms), they are preserved by f : if any hold for ea, eb, then
likewise do they for efa, efb, which suffices. □

Proposition 3.2. f |σ is induced by an isomorphism ∆σ → ∆fσ.

Proof. By Theorem 2.26 and Corollary 2.27, it suffices that f |σ does not have a
K3,K1,3-pair. Suppose that f |σ has such a pair on ea, eb, ec ∈ E(∆σ). If ea ∪ eb ∪
ec ∼= K3 then efa ∪ efb ∪ efc ∼= K1,3. It follows that link(σ \ {a, b, c}) ∼= S(M1,3)
and link(fσ \ {fa, fb, fc}) ∼= S(M0,6) ̸∼= S(M1,3), a contradiction. See Figure 3.
An analogous argument applies exchanging K3 and K1,3. □

ea

eb
ec

efa

efb efc

Figure 3. The M1,3 and M0,6 components in MΓ \ (σ \ {a, b, c})
and MΓ′ \ (fσ \ {fa, fb, fc}) respectively. The figure shows one-
half of the doubled handlebodies.

3.2. Constructing a diffeomorphism. We are interested in diffeomorphisms
MΓ →MΓ′ that agree with f locally about σ.

Definition 3.3. For a maximal sphere system σ ⊂ S(MΓ), let

Xσ :=
⋃
a∈σ

link(σ \ a) .
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We note that σ ⊂ Xσ. Let fσ : ∆σ → ∆fσ denote an isomorphism inducing f |σ.
RealizingMΓ,MΓ′ as the gluing of pairs of pants along spheres in σ, fσ respectively,
fσ is induced by a diffeomorphism h0 : MΓ → MΓ′ defined up to isotopy and
precomposition by diffeomorphisms fixing pointwise ∆σ.

Definition 3.4. A separating sphere a ⊂ MΓ is almost peripheral if it bounds
a pair of pants or a M1,1.

For an almost peripheral sphere a ∈ σ, link(σ \a) = {a, a′, a′′} and the half-twist
fixes a and exchanges a′, a′′: obtain h from h0 by precomposing by half-twists on
almost peripheral a ∈ σ such that h agrees with f on link(σ \ a).

Lemma 3.5. h agrees with f on Xσ.

Proof. By construction h∗ agrees with f on σ and link(σ \ a) for a ∈ σ almost
peripheral. If a is a loop in ∆σ, then link(σ \ a) = {a} ⊂ σ. Thus it remains to
show that h∗ agrees with f on link(σ \a) when a is not a loop or almost peripheral.

Let link(σ \ a) = {a, a′, a′′} and σ′ = (σ \ a) ∪ a′ and σ′′ = (σ \ a) ∪ a′′. Let
M ∼= M0,4 \ ∂M0,4 denote the complementary component of σ \ a containing a,
hence M ′ = h(M) is the complementary component of fσ \ fa containing fa.
Since a is not almost peripheral, there exist b, b′ ∈ σ which are separated by a in
M (possibly b = b′). Without loss of generality, a′ separates b, b′ in M and a′′ does
not, hence likewise ha and ha′ separate hb, hb′ in M ′ and ha′′ does not. It follows
that link(σ \{b, b′}) ∼= link(σ′ \{b, b′}) ̸∼= link(σ′′ \{b, b′}) and link(hσ \{hb, hb′}) ∼=
link(hσ′ \ {hb, hb′}) ̸∼= link(hσ′′ \ {hb, hb′}). See Figure 4.

We have that ha = fa, hb = fb, and hb′ = fb′. Suppose that ha′ = fa′′

and ha′′ = fa′. Then hσ′′ = fσ′ (and vice versa), hence link(hσ′′ \ {hb, hb′}) =
link(fσ′ \ {fb, fb′}) ∼= link(σ′ \ {b, b′}) ∼= link(σ \ {b, b′}) ∼= link(hσ \ {hb, hb′}), a
contradiction with the above. Hence ha′ = fa′ and ha′′ = fa′′ as required. □

Remark 3.6. The map f need not be an isomorphism for Lemma 3.5 to hold.
Suppose that f : Z ⊂ S(MΓ)→ S(MΓ′) such that Xσ ⊂ Z, f |σ is the edge map of

an isomorphism ∆σ
∼−→ ∆fσ, and h :MΓ →MΓ′ is the diffeomorphism constructed

as above. If f extends to an isomorphism link(σ\{a, b, c}) ∼−→ link(fσ\{fa, fb, fc})
for any a, b, c ∈ σ such that ea ∪ eb ∪ ec is connected in ∆σ, then h induces f
on Xσ: in particular, in the proof above link(σ′ \ {b, b′}) ⊂ link(σ \ {a, b, b′})
and link(fσ′ \ {fb, fb′}) ∼= link(σ′ \ {b, b′}), hence the argument applies without
modification. We will use this fact in Section 6.1.

Lemma 3.7. Suppose that ρ, ρ′ are maximal sphere systems that differ by a flip
move. If a diffeomorphism g : MΓ → MΓ′ agrees with f on Xρ, then it likewise
agrees with f on Xρ′ .

Proof. Suppose that ρ′ is obtained from ρ by a flip move a 7→ a′, and let ρ0 ⊂ ρ∩ρ′
denote the set of spheres in ρ adjacent to a (equivalently, spheres in ρ′ adjacent to
a′). We note that link(ρ \ a) = link(ρ′ \ a′), ρ△ρ′ = {a, a′} ⊂ link(ρ \ a), and for
γ ∈ (ρ ∩ ρ′) \ ρ0, link(ρ \ γ) = link(ρ′ \ γ).

It follows that Xρ′ \Xρ ⊂
⋃

b∈ρ0
link(ρ′ \b), thus it suffices that g∗ agrees with f∗

on link(ρ′\b) for b ∈ ρ0. If b is a loop in ∆ρ′ , then link(ρ′\b) = {b} ⊂ ρ. Otherwise,
let M be the complementary component of ρ \ {a, b} = ρ′ \ {a′, b} containing a, a′,
and b;M ′ = g(M) is then the complementary component of fρ\{fa, fb} containing
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b

b′

a

b

b′

a′′

link(σ \ {b, b′}) ∼= S(M0,4) ∗ S(M0,4) link(σ′′ \ {b, b′}) ∼= S(M0,5)

b

b′

a

b

b′

a′′

link(σ \ {b, b′}) ∼= S(M0,5) link(σ′′ \ {b, b′}) ∼= S(M1,2)

b = b′

a
b = b′

a′′

link(σ \ {b, b′}) ∼= S(M0,4) link(σ′′ \ {b, b′}) ∼= S(M1,1)

Figure 4. Various links in the proof of Lemma 3.5. Row 1 shows
when ea and eb are not adjacent, Row 2 when ea and eb are incident
on a single common vertex, and Row 3 when b = b′. Because a
and a′ both separate b and b′ in M , the left column is identical
replacing a with a′, σ with σ′, and b with b′.

fa, fa′ and fb. Let link(ρ \ b) = {b, b′, b′′} and link(ρ′ \ b) = {b, b†, b‡}, all spheres
of which are contained in M . We consider two cases (see Figure 5):

(i) ea and eb are incident on two vertices (M ∼= M1,2 \ ∂M1,2). Then b is non-
separating in M , hence exactly one of b†, b‡ is separating in M , say b†. Thus
link(b† ∪ (ρ′ \ {a′, b})) ∼= S(M1,1) and link(b‡ ∪ (ρ′ \ {a′, b})) ∼= S(M0,4). The
same holds for the f images of these sets, and since only gb† is separating in
M ′, likewise for their g∗ images. Hence g∗b

† = fb† and g∗b
‡ = fb‡.

(ii) ea and eb are incident on only one vertex (M ∼= M0,5 \ ∂M0,5). Exactly one
of b†, b‡ is disjoint from b′, say b†. Then likewise gb† is disjoint from gb′ and
gb‡ is not. Since f preserves disjointness and g∗b

′ = fb′, g∗b
† = fb† and

g∗b
‡ = fb‡. □
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a′

b

b†

b‡

b b†

b′

a′

a

b‡

b′′

Figure 5. On the left is M ∼= M1,2 \ ∂M1,2 illustrating part (i).
On the right is M ∼=M0,5 with the spheres in part (ii) drawn in.

Corollary 3.8. If a diffeomorphism g agrees with f on Xσ, then g∗ = f .

Proof. Fix a compact exhaustionMi ofMΓ such that ∂Mi ⊂ σ. For any b ∈ S(MΓ),
choose i such that b ⊂Mi; let σ̄ = σ∩Mi \∂Mi and fix σ̄′ a maximal sphere system
inMi containing b. By Proposition 2.23 there is a finite sequence of maximal sphere
systems in Mi between σ̄ and σ̄′ by successive flip moves, which then extends to
such a sequence between σ and σ′ = σ̄′ ∪ (σ \ σ̄) ∋ b of maximal sphere systems in
MΓ. Inductively applying Lemma 3.7 shows that g agrees with f on Xσ′ , and in
particular g∗(b) = fb. As this is true for any b, it follows that g∗ = f . □

Remark 3.9. It follows that g∗ is uniquely determined by its restriction toXσ among
the class of isomorphisms induced by diffeomorphisms MΓ →MΓ′ . In particular, if
g′ is another diffeomorphism that agrees with g∗ over Xσ, then g

′
∗ = g∗.

We now restate and prove the main theorem of this paper:

Theorem 1.1. Let Γ,Γ′ be two locally finite connected graphs. Suppose f : S(MΓ)→
S(MΓ′) is an isomorphism. Then f is induced by a diffeomorphism h :MΓ →MΓ′ .
In particular, (i) Γ and Γ′ are proper homotopy equivalent and (ii) when Γ is not
a graph of rank r with s rays such that 2r + s < 4 or (r, s) ∈ {(0, 4), (2, 0)},
Aut(S(MΓ)) ∼= Map(Γ) as topological groups.

Proof. From Lemma 3.5 and Corollary 3.8 we obtain that f is induced by a diffeo-
morphism, and in particular the action ξ : Map(MΓ) → Aut(S(MΓ)) is surjective.
Thus MΓ and MΓ′ are diffeomorphic, hence MΓ,MΓ′ have the same characteris-
tic triple and likewise do Γ,Γ′. By Theorem 2.1 Γ and Γ′ are proper homotopy
equivalent, which implies (i).

Let ρ : Map(Γ)→ Aut(S(MΓ)) be the action induced by ξ in Theorem 2.5; note
that ρ and ξ have the same image in Aut(S(MΓ)), hence ρ is surjective. To show
(ii), suppose Γ is a graph satisfying the hypotheses of (ii): by Theorem 2.5 ρ is
injective, hence a group isomorphism. To obtain that ρ is a homeomorphism, we
observe that the pullback of the permutation topology on Aut(S(MΓ)) is compatible
with the usual quotient topology on Map(Γ). In particular, by [Uda24, Prop. 7.1]
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the quotient topology is identical to the topology generated by the subbasis at
identity {U ′

a}a∈S(MΓ)(0) , where

U ′
a = ρ−1(Ua) = {ϕ ∈ Map(Γ) : ρ(ϕ)(a) = a}

and {Ua} is the subbasis for Aut(S(MΓ)) given after Definition 2.4. □

Consequently, we obtain another proof of the following result, originally proven
in Proposition 4.11 of [AB21].

Corollary 3.10. For any locally finite connected graph Γ, Map(Γ) is Polish.

Proof. It is a standard result of descriptive set theory that the automorphism group
of a countable graph equipped with the permutation topology is Polish. Except
for the finitely many cases excluded in Theorem 1.1(ii), Map(Γ) is topologically
isomorphic to the automorphism group of a countable graph by Theorem 1.1(ii), so
the result follows in these cases. For the excluded cases, Map(Γ) is countable and
discrete, hence Polish. □

4. Rigidity of the sphere complex for finite-type doubled
handlebodies with S2-boundaries

The goal of this section is to establish Theorem 1.2. The setup and arguments
closely follow [BL24a, Section 3], where analogous results are proven for doubled
handlebodies with empty boundary. For completeness, we reintroduce their setup
and highlight the adjustments needed to prove the results in the setting of doubled
handlebodies with nonempty boundary. For clarity, we will match the notation
conventions in [BL24a] throughout this section. We first construct a set X0 that
can be extended to a finite strongly rigid set X by adding a collection of “good
spheres.”

Throughout this section, we will implicitly use Proposition 2.9 to identify sphere
complexes of submanifolds with subcomplexes of the sphere complex of a parent
manifold. In particular, links of simplices will be identified with sphere complexes
of submanifolds.

Given a subcomplex X of S(MΓ), we say that X is geometrically rigid if for
every simplicial locally injective map f : X → S(MΓ) there is a diffeomorphism h
ofMΓ such that the restriction of h∗ to X agrees with f . To prove Theorem 1.2, we
first exhaust S(Mn,s) by a sequence of geometrically rigid sets in Proposition 4.10,
and then show that these sets are strongly rigid.

4.1. Constructing a geometrically rigid set X. Let Y be a maximal collection
of disjoint spheres Si ⊂ S(Mn,s) whose union is non-separating. Then, by removing
a small regular neighborhood of Y from Mn,s, we obtain a manifold with no genus.
Specifically,

N :=Mn,s \ nbd(Y ) ∼=M0,2n+s

Let Z be the collection of all spheres in S(Mn,s) that are disjoint from Y . By
construction of N , it follows Z = S(N).

The spheres in ∂N come in two types:

1) those coming from the original boundary of Mn,s;
2) pairs of spheres S+

i , S
−
i coming from removing a sphere Si ∈ Y .
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We define a labeling map δ : ∂N → Y ∪ ∂Mn,s recording where boundary compo-
nents of N came from. Specifically, for spheres S±

i ∈ ∂N coming from removing
a sphere Si ∈ Y , δ(S±

i ) = Si. On the other hand, for spheres originally in the
boundary Sj ⊂ ∂Mn,s, we define δ(Sj) = Sj . See Figure 6 for an illustration.

S3

S4

S5

S6

S−
1 S+

1 S−
2 S+

2

S3

S4

S5

S6

S1 S2

−→
δ

Figure 6. The handlebodies pictured above illustrate the process
of removing a neighborhood of Y from Mn,s. The red spheres
correspond to boundary components of the uncut manifold. The
blue spheres play the role of Y .

We are interested in the subgraph of the 1-skeleton of S(Mn,s) spanned by Y
and Z, which we denote by

X0 := ⟨Y ∪ Z⟩.
Because X0 is a join of Y and Z, and Y is complete, X0 is not geometrically rigid.
See Figure 7.

S1

S2 S3 T

f swaps S1 and S2

S2

S1 S3 f(T ) = T

h(T )

−→
f

Figure 7. Let S1, S2, S3 ∈ Y and T ∈ Z be as shown above.
Consider the simplicial isomorphism f : X → X with f |Z = IdZ ,
and f |Y permuting S1 and S2. Any homeomorphism inducing the
permutation of S1 and S2 cannot fix T . So, f is not induced by
any homeomorphism h.

Fix a locally injective simplicial map f : X0 → S(Mn,s). Then intersecting pairs
of spheres in Z have X0-detectable intersection, so by Lemma 2.19 f(Z) must fill
a connected submanifold. As f(Z) is disjoint from f(Y ), the submanifold filled by
f(Z) must lie in a component of Mn,s \ nbd(f(Y )). By a complexity argument,
this is only possible if Mn,s \ nbd(f(Y )) is connected, and thus homeomorphic to
M0,2n+s. That is, if Mn,s \nbd(f(Y )) is disconnected, there is no way the manifold
filled by f(Z) could embed into any of the components of Mn,s \nbd(f(Y )), as can
be seen by analyzing the possible components ofMn,s\nbd(f(Y )). By Lemma 2.21,
there is a homeomorphism h : N =Mn,s \nbd(Y )→ N ′ =Mn,s \nbd(f(Y )) arising
from f |X0 , such that h|Z = f |Z .

To build a finite rigid set, we will add spheres to the set X0, namely pairs of
“good spheres.” The addition of these good spheres will allow us to keep track of
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the pairs of boundary components of M0,2n+s that correspond to a component of
Y . In particular, we will show that when X0 is extended to a set X containing good

pairs h : N → N ′ ascends to a homeomorphism ĥ : Mn,s → Mn,s, which induces
f : X → S(Mn,s).

We will now recall the definitions of a good sphere and a good pair.

Definition 4.1 ([BL24a, Section 3]). Given A ⊂ Y , let A+, A− ⊂ ∂N be the
boundary spheres obtained from removing a neighborhood of A from Mn,s; that is,
δ(A±) = A. Let a be an essential sphere in Mn,s that essentially intersects A in a
single simple closed curve, and such that a is disjoint from all other spheres of Y .

When we descend to the cut manifold N , the sphere a decomposes as the union
of the two disjoint disks a+ and a−, with ∂a+ ⊂ A+ and ∂a− ⊂ A−. The boundary
of regular neighborhoods of A+ ∪ a+ and A− ∪ a− are disjoint pairs of pants. See
Figure 8 for an illustration of this setup.

A

a

A+

S3

S4

a+

A−

a−

S1

S2

Figure 8. The sphere a is good for A. In the top picture, the
spheres a and A are pictured in the uncut manifoldMn,s, and they
intersect essentially. After cutting along Y , we obtain the picture
in N below. The six spheres pictured inside of S2 and outside of
S4 are meant to illustrate that these spheres are essential and not
necessarily peripheral, unlike S1 and S3, which are peripheral since
a is good.

We denote ∂(nbd(A−∪a−)) = A−∪S1∪S2 and ∂(nbd(A
+∪a+)) = A+∪S3∪S4.

Let ∂(A, a) := A+ ∪ A− ∪ S1 ∪ S2 ∪ S3 ∪ S4. If S1 and S3 are peripheral in the
cut manifold Y , we say that a is a good sphere for A. Suppose that a and a′ are
disjoint good spheres for A. Then if ∂(A, a) ∩ ∂(A, a′) = A+ ∪ A−, then a and a′

are said to be a good pair for A.

Good pairs can always be found when 2n + s ≥ 6, i.e., when ∂N has at least 6
components. This is because each sphere in a good pair for A requires the use of
two boundary components of N other than A±, and by assumption, these pairs of
boundary components must be distinct for each sphere in the pair.
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Let X be the subcomplex of S(Mn,s) spanned by the vertices of X0, together
with a choice of a good pair for each sphere A ⊂ Y .

4.2. Geometric rigidity of X for Mn,s. Throughout the rest of Section 4, we
fix a choice of Mn,s, with 2n+ s ≥ 6.

Up to this point, the setup has been the same as in [BL24a, Section 3]. A key
difference in the setting of Mn,s when s ̸= 0 is that the good pairs in X serve an
additional role as discussed below in the proof of Proposition 4.2.

Proposition 4.2 ([BL24a, Lemma 13]). Let f : X → S(Mn,s) be a locally injec-
tive, simplicial map. Let h : N → N ′ be the homeomorphism inducing f |Z as in
Lemma 2.21. Then, for every sphere A ∈ Y we have δ(h(A±)) = f(δ(A±)) where
A+ and A− denote the corresponding boundary spheres in N , i.e., δ(A±) = A.

Proof. For all A ∈ Y , the spheres A± are not mapped by h to spheres S ∈ ∂N ′ com-
ing from the original boundary of Mn,s. This is true because the original boundary
spheres of Mn,s do not intersect any essential spheres in Mn,s. In particular, the
boundary spheres do not admit any good spheres or good pairs. Thus, the good
spheres in X allow us to differentiate between the boundary components of N that
result from removing Y and the original boundary components ofMn,s. A priori, h
could map a sphere coming from Y to an original boundary sphere of Mn,s. How-
ever, following the argument in [BL24a, Lemma 13] this cannot happen. Given this
additional role of the good pairs, the proof of [BL24a, Lemma 13] applies in the
more general setting of Mn,s when s ̸= 0. □

Proposition 4.3 ([BL24a, Proposition 14]). The set X is geometrically rigid.

Proof. Proposition 4.2 shows that h : N → N ′ ascends to a map ĥ : Mn,s → Mn,s

such that ĥ∗ and f agree on X0. It remains to verify that ĥ∗ and f agree on
the good spheres in X. The argument proceeds exactly as in [BL24a, Proposition
14]. □

4.3. Exhaustion by geometrically rigid sets. In this section, we generalize
Proposition 22 of [BL24a] and prove that we can find a nested family of geometri-
cally rigid sets that exhaust S(Mn,s) (see Proposition 4.10). The proof will primar-
ily follow the argument used in [BL24a], with two differences that will be explicitly
stated.

Definition 4.4. Suppose P is a pants decomposition of Mn,s and a ∈ P . A sphere
b ∈ S(Mn,s) is a split sphere for (a, P ) if a is the unique sphere in P intersecting
b.

Definition 4.5. If X ⊆ S(Mn,s) is a subcomplex, P ⊆ X(0) and b ∈ X(0) is a
split sphere for (a, P ), then we say that P is X−split at a by b. We say that P is
X−split if it is X−split at a for some a ∈ P . If X contains every split sphere for
P , then we say it is fully X−split.

Definition 4.6. Suppose X ⊆ S(Mn,s) is a subcomplex and a ∈ X(0). A pair of

distinct, disjoint spheres (b1.b2) in S(Mn,s)
(0) is a split pair for a relative to X if

there exists pants decompositions P1, P2 ⊆ X(0), both containing a such that bi is
a split sphere for (a, Pi) for i = 1, 2. See Figure 9.
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b1

a

P1 b2

a

P2

Figure 9. The spheres b1 and b2 give a split pair for a with respect
to the pants decompositions P1 and P2.

Lemma 4.7 ([BL24a, Lemma 18]). Suppose X ⊆ S(Mn,s) is a geometrically rigid

subcomplex and a ∈ X(0) has a split pair (b, c). Then the subcomplex Xb,c induced
by X ∪ {b, c} is geometrically rigid.

The following is Lemma 20 of [BL24a]. The lemma as stated in [BL24a] claims
that if a and c are two distinct adjacent spheres in a pants decomposition P of
Mn,s, then the component ofMn,s \(P \{a, c}) is homeomorphic toM0,5. However,
consider Case 2 of Figure 10, where when a and c are the two nonperipheral spheres
on the left, and the given component is homeomorphic to M1,2.

Instead, we note the following lemma, which follows directly from their proof.
We simply assume that a and c have the property thatMn,s \(P \{a, c}) is actually
homeomorphic to M0,5. Afterward, we note how to modify the proof of Lemma 21
of [BL24a], which is the only place where Lemma 20 is used in that paper.

Lemma 4.8 ([BL24a, Lemma 20]). Suppose X ⊆ S(Mn,s) is a subcomplex and

P ⊆ X(0) is a pants decomposition that is X−split at a by b ∈ X(0). For every
sphere c ∈ P that is adjacent to a so that the component of Mn,s \ (P \ {a, c})
containing a and c is homeomorphic to M0,5, there are spheres d and e such that
(d, e) is a split pair for c.

We now discuss Lemma 21 of [BL24a] and note the small difference that has to
be made in the proof.

Lemma 4.9 ([BL24a, Lemma 21]). Suppose X ⊆ S(Mn,s) is a finite geometrically

rigid set and P ⊆ X(0) a pants decomposition is X−split. Then there is a finite
geometrically rigid set XP ⊇ X so that P is fully XP−split, that is, XP contains
every split sphere for P .

Proof. We inductively define the sets Pi ⊂ P as follows. Suppose a0 ∈ P is X-split.
Define P0 = {a0}, and for i ≥ 1 let

Pi =

{
s ∈ P

∣∣∣∣ s is adjacent to a ∈ Pi−1 and the component of Mn,s \ (P \ {a, s})
containing a, s is homeomorphic to M0,5

}
.

These sets differ from the sets denoted Pi in the proof of Lemma 21 of [BL24a], as
there it is not assumed that the component of Mn,s \ (P \ {a, s}) is homeomorphic
to M0,5 (as they implicitly assume this). Even so, just as in their proof, there is a
k so that ∪ki=1Pi contains all the spheres in P which have a split sphere (i.e., are
not self-adjacent). To see this, consider the dual graph to P , which has a vertex for
every component of Mn,s \ P , and an edge connecting two vertices if they share a
common component of P . This graph is connected, and the subgraph spanned by
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the edges whose corresponding spheres are not self-adjacent is connected (as such
spheres correspond to the non-loop edges of the graph).

Then, starting from the edge corresponding to a0, one can reach any other sphere
by only going along edges corresponding to spheres a and s so that the component of
Mn,s\(P \{a, s}) containing a and s is homeomorphic toM0,5. To see this, note that
every edge which is not a loop contains a vertex of valence 2, or a vertex of valence
3 that is not incident to a loop (potentially one of both). If a vertex v is valence
2 and s1 and s2 are the two spheres in P that correspond to the edges containing
v, then it is easy to see that the component of Mn,s \ (P \ {s1, s2}) containing s1
and s2 is homeomorphic to M0,5. Thus if s1 ∈ Pi−1, then s2 ∈ Pi. If v has valence
3 and is incident to no loops, with edges corresponding to spheres s1, s2, and s3,
then one can see that one of these spheres, say s3, is such that, for i = 1, 2, the
component of Mn,s \ (P \ {si, s3}) containing si and s3 is homeomorphic to M0,5.
In this case, one needs to explicitly use the fact that M2,0 has been excluded, see
Case 5 in Figure 10 below. Thus if s1 is in Pi−1, then s3 ∈ Pi and s2 ∈ Pi+1, and
similarly if s2 ∈ Pi−1. If s3 ∈ Pi−1, both s1 and s2 are in Pi.

Figure 10 depicts all the cases for v and helps illustrate the above argument. The
important cases for the choice of vertex v are Case 4, which illustrates the valence
2 case, and Cases 10 and 11, which illustrate the valence 3 case.

The proof then proceeds identically as in [BL24a], as the connectivity argument
above shows that every non-self-adjacent sphere in P will eventually be contained
in some Pi. □

We now note the main proposition, which is the key ingredient for proving Theo-
rem 1.2. The proof is nearly identical, but we will modify the start of the argument
slightly so that it makes sense in the generality we are working in.

Proposition 4.10 ([BL24a, Proposition 22]). There exists a nested family of finite
geometrically rigid sets Xj ⊆ S(Mn,s) such that

S(Mn,s) =
⋃
j

Xj

Proof. Let X be the strongly rigid set constructed before Proposition 4.2. By
construction, X contains a pants decomposition P0 which is X-split.

We define a sequence of collections of pants decompositions of Mn,s as follows.
Begin with P0 = {P0}, and inductively define

Pi = {P a pants decomposition | there is a P ′ ∈ Pi−1 such that |P∆P ′| = 2}.

For every P ∈ Pi, there is a P ′ ∈ Pi−1 so that P is obtained from P ′ by exchang-
ing split spheres. By Proposition 2.23, every pants decomposition can be reached
from P0 by applying these exchanges. Thus, every pants decomposition of Mn,s

is contained in some Pi. The proof then proceeds in exactly the same way as in
Proposition 22 of [BL24a]. □

To finish the proof of Theorem 1.2, it suffices to show that each Xj in Proposi-
tion 4.10 is strongly rigid. To do this, we summarize the corresponding argument
in [BL24a]. The proofs of the next lemma and its corollary follow exactly as in
[BL24a].
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Figure 10. In all the cases, the vertex v is the pink vertex. In
cases 1-4, v has valence 2, and the blue spheres denote s1 and s2.
In cases 5-11, v has valence three, the blue spheres denote s1 and s2
while the red sphere denotes s3. The cases without these spheres
colored in don’t apply, either because the pink pair of pants has
a self-adjacent sphere (Cases 3, 6, 7, 8 and 9) or because we may
assume the complexity is high enough (Cases 1, 3, 5 and 8).
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Lemma 4.11 ([BL24a, Lemma 23]). Suppose h ∈ Map(Mn,s) is the point-wise
stabilizer of a pants decomposition P so that every sphere is the boundary of two
distinct complementary components of P . Then h induces the identity map on
S(Mn,s).

Corollary 4.12 ([BL24a, Corollary 24]). If X ⊂ S(Mn,s) is geometrically rigid
and contains a pants decomposition P so that every sphere is the boundary of two
distinct complementary components of P , then it is uniquely geometrically rigid in
the sense that any mapping class fixing X pointwise induces the identity on S(Mn,s).

Proof of Theorem 1.2. The proof of Theorem 25 of [BL24a] generalizes to imply
1.1(ii) a graph of rank n with s ends, where 2n+ s ≥ 6 (using Theorem 2.5 in place
of Laudenbach’s result in [Lau73]).

In particular, if Xj is a set as in Proposition 4.10 and f : Xj → S(Mn,s) is a
simplicial locally injective map, then by Proposition 4.10 there is a diffeomorphism h
of Mn,s inducing f . By Corollary 4.12, as each Xj contains a pants decomposition
as required, any other diffeomorphism inducing f agrees with h on S(Mn,s). In
particular, h∗ is an automorphism of S(Mn,s) that agrees with f on Xj . It is
the only such automorphism since there is some diffeomorphism inducing every
automorphism, and we just showed that any other diffeomorphism inducing f agrees
with h on S(Mn,s). Thus, Xj is strongly rigid. □

5. Another proof of Theorem 1.1

In this section, we utilize the results in Section 4 along with an argument anal-
ogous to one that appears in [BDR20] to give another proof of Theorem 1.1.

We first show that the sphere complex uniquely determines finite-rank doubled
handlebodies. This result follows from those in Section 3, but we give another proof
of it here to show the proof of Theorem 1.1 that appears here is independent of the
proofs in Section 3.

Proposition 5.1. Suppose ϕ : S(Mn,s)→ S(Mm,r) is an isomorphism between the
sphere graphs of two handlebodies of finite type. Then n = m and s = r.

Proof. Note that the dimension of the largest simplex of the two sphere complexes
must be the same, which puts a dimensional restriction on when the two graphs can
be isomorphic. Thus, if s, r ∈ {0, 1, 2}, the result follows, as the maximal simplex
dimension of S(Mn,s) is 3n+ s− 3, and similarly it is 3m+ r− 3 for S(Mm,r). For
these to be equal, s − r must be a multiple of 3, which means s = r in this case.
Thus, n = m as well.

Now suppose we have an isomorphism when m > n and s ≥ 3. Then it follows
that s > r. In S(Mn,s) there is a sphere S cutting off a homeomorphic copy of
M0,s+1. In particular, by Proposition 5.3, as the equivalence classes of the link
must be preserved by the isomorphism, ϕ(S) must also be a separating sphere, and
one of its complementary components is homeomorphic to M0,s+1. This is because
the only doubled handlebodies with boundary that have a finite sphere graph are
M1,1 and M0,p, and the only time when they have the same number of spheres as
M0,s+1 is when p = s+1 (S(M1,1) only has a single sphere). But this is impossible
as s > r, so no such spheres exist in Mm,r. Hence, m = n, and thus s = r, finishing
the proof. □
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5.1. Links of sphere systems. In analogy with [BDR20], we first define an equiv-
alence relation on link(σ) for σ a sphere system in S(MΓ).

Definition 5.2. Let a, b ∈ link(σ). Then a ∼ b if and only if there exists c ∈ link(σ)
non-adjacent to both a, b.

Remark. Since link(σ) is loop-free, in particular a ∼ a. Likewise, if a, b are non-
adjacent, then a is non-adjacent to both and a ∼ b.

While defined combinatorially, ∼ may be characterized topologically. In partic-
ular, the following shows that ∼ is an equivalence relation.

Proposition 5.3. Let a, b ∈ link(σ). Then a ∼ b if and only if a, b lie in the same
complementary component of σ.

Proof. To prove the forward direction, note that if c ∈ link(σ) is not adjacent to
a, b, then a ∪ b ∪ c is connected and disjoint from σ, hence is contained in a single
connected component.

Conversely, suppose that a, b ⊂ M for M ∈ π0(MΓ \ σ). We assume a, b are
disjoint and distinct, else a ∼ b by the remark above; by Remark 2.13, a, b are
essential in M . Suppose first that M has at least two distinct punctures x, y. By
Lemma 2.8, it suffices to find a simple arc γ ⊂ M between x, y that intersects
a, b essentially: the sphere c bounding a regular neighborhood of γ intersects a, b
essentially in M , thus by Proposition 2.9 essentially in MΓ. Thus c is essential in
MΓ and disjoint from σ, hence c ∈ link(σ) and a ∼ b. We consider four cases:

(i) a ∪ b is non-separating. We may choose γ to intersect a, b each exactly once.
(ii) a∪b is separating but a, b are non-separating. We may choose γ intersecting a, b

each exactly once if x, y are not separated by a ∪ b; else, choose γ to intersect
b once and a with signed intersection ±2.

(iii) Only a is separating. If a separates some punctures of M , then replace x, y
such that they are separated by a and fix γ to intersect b exactly once. Else,
the complementary component M ′ of a not containing x, y must have genus; if
b ̸⊂ M ′, fix a non-separating sphere d ⊂ M ′ and choose γ to intersect b and d
(if defined) each exactly once.

(iv) a, b are separating. Let U, V,W be components ofM \(a∪b), where a separates
U and V ∪W and b separates U ∪V and W . Let P denote the set of punctures
ofM . If U has no punctures in P , then it has genus, hence fix a non-separating
sphere X ⊂ U , and likewise if W has no punctures in P fix a non-separating
sphere Y ⊂W . Replace x ∈ P to be a puncture in U , if one exists, and y ∈ P
to be a puncture in W , if one exists, or else some puncture distinct from x. If
defined, let γ intersect X,Y each exactly once.

M is obtained by removing σ from MΓ, hence must have at least one puncture.
If M has exactly one puncture, then we may assume M has genus at least 2;
otherwise, M has at most one distinct essential sphere, and the statement follows.
Hence there exists an essential sphere q distinct from a, b and non-separating in M ;
we note that M ′ =M \ q has three punctures. Replacing σ with σ′ = σ ∪ {q} and
M with M ′, the argument above obtains c ∈ link(σ′) ⊂ link(σ) non-adjacent to
a, b. □

Let link(σ)|[a] denote the full subcomplex of link(σ) (or equivalently of S(MΓ),
since it is flag) induced by the equivalence class of a in link(σ). By Proposition 5.3,
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[a] is exactly the spheres in link(σ) in the same component M ⊂MΓ \σ as a. From
Proposition 2.9 and Remark 2.13 we then have the following:

Corollary 5.4. Let σ ⊂ S(MΓ) and a ∈ link(σ). Let M be the component of MΓ\σ
containing a. Then the equivalence class [a] is the set of all essential embedded 2-
spheres in M , and link(σ)|[a] ∼= S(M). □

5.2. Diffeomorphisms from automorphisms. The following theorem will be
the main result to proving Theorem 1.1 in the general case. It is analogous to the
work in Section 3 to construct a diffeomorphism inducing an isomorphism between
sphere graphs, but the method in which we build the diffeomorphism differs from
what is in Section 3. The proof below is inspired by the proof of [BDR20, Theorem
1.3], and for the most part, follows it very closely.

Theorem 5.5. Let Γ and Γ′ be two locally finite, infinite graphs, with associated
3-manifolds MΓ and MΓ′ . Every simplicial isomorphism of the sphere complexes
S(MΓ)→ S(M ′

Γ) is induced by a homeomorphism MΓ →MΓ′ .

Proof. Fix a simplicial isomorphism Ψ: S(MΓ) → S(M ′
Γ). Fix a compact exhaus-

tion K1 ⊂ K2 ⊂ . . . of MΓ such that all components MΓ \Ki are infinite-type and
Ki is homeomorphic to Mni,si for 2ni + si ≥ 6. By enlarging each Ki if necessary,
we may assume that the boundary spheres ai of Ki are essential embedded spheres
of Ki+1.

Let Ei denote the equivalence class of link(ai) that contains essential embedded
2-spheres in Ki. The equivalence class Ei is distinguishable combinatorially from
the other equivalence classes of link(ai) since it is the unique class with a finite
clique number. This is because Ki is finite-type and, therefore, the spheres in a
pants decomposition of Yi for a finite maximal clique. Since connected components
of MΓ \ Yi are of infinite type, their associated equivalence classes in link(ai) have
unbounded clique numbers.

In particular, as the restriction of Ψ from link(ai) to link(Ψ(ai)) sends equiva-
lence classes to equivalence classes (as the classes are defined combinatorially), it
follows from the discussion in the previous paragraph that:

• link(Ψ(ai)) contains exactly one equivalence class E′
i which corresponds to

a compact doubled handlebody K ′
i ⊂MΓ′ whose boundary is Ψ(ai), and

• Ψ restricts to an isomorphism Ψi : S(Ki)→ S(K ′
i).

By Proposition 5.1, Ki
∼= K ′

i. Recall that the proof of Theorem 1.2 showed
that every element of Aut(S(Mni,si)) is induced by a diffeomorphism. It follows
that Ψi is induced by a diffeomorphism ϕi : Ki → K ′

i. The ambiguity on the
choice of ϕi is only up to a product of sphere twists. By possibly modifying each ϕi
by sphere twists, we may thus assume that these diffeomorphisms are compatible
in the sense that ϕi+1(Ki) = K ′

i and the restriction of ϕi+1 to Ki agrees with
ϕi. In particular, the direct limit of this sequence of diffeomorphisms induces a
diffeomorphism ϕ : MΓ → MΓ′ which, by construction, induces the isomorphism
Ψ. □

To finish the proof of Theorem 1.1, one can follow the proof in Section 3, utilizing
Theorem 5.5 in place of Lemma 3.5 and Corollary 3.8.
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6. Locally finite strongly rigid sets

Let MΓ be the doubled handlebody associated to a locally finite graph Γ. We
would like to extend to S(MΓ) the results of Section 4 and construct an exhaustion
by (the appropriate generalization of) finite strongly rigid sets.

If Γ is infinite-type, then MΓ does not admit a finite strongly rigid set. Indeed,
a finite set X0 ⊂ S(MΓ)

(0) has compact union K =
⋃

a∈X0
a ⊂ MΓ. There exists

a diffeomorphism h : MΓ → MΓ acting non-trivially on S(MΓ) but supported
disjointly from K, hence fixing X0. The identity automorphism and h∗ ̸= id both
restrict to the inclusion map of X0 into S(MΓ), hence X0 ↪→ S(MΓ) does not
extend to a unique automorphism of S(MΓ). We instead consider the rigidity of
subcomplexes that satisfy a local version of finiteness.

Definition 6.1. A subcomplex X ⊂ S(MΓ) is topologically locally finite if
every compact K ⊂MΓ essentially intersects finitely many components of X(0).

In fact, for all Γ of infinite-type there exist no strongly rigid sets in S(MΓ),
as we describe in Section 6.2. Nonetheless, we will construct subcomplexes which
always admit unique isomorphism extensions of locally injective maps, provided
those maps also preserve maximal sphere systems.

Definition 6.2. A simplicial map f : X ⊂ S(MΓ) → S(MΓ′) is maximal if for
any sphere system σ ⊂ X that is maximal in MΓ, fσ is maximal in MΓ′ .

This condition is necessary in the following sense: if σ ⊂ S(MΓ) is a maximal
sphere system σ and a map f : σ → S(MΓ) extends to an automorphism, then
fσ must also be maximal. If X ⊂ S(MΓ) is rigid, then any locally injective map
X → S(MΓ) extends to an automorphism, hence is maximal.

A subcomplex X ⊂ S(MΓ) for which any maximal locally injective map f : X →
S(MΓ) extends to a unique automorphism is strongly rigid over maximal maps.
For brevity, by locally finite strongly rigid set, we will mean a topologically
locally finite subcomplex that is strongly rigid over maximal maps. Note that when
Γ has infinite type, such subcomplexes are not locally finite in the usual simplicial
sense. In Section 6.1, we prove the following, which implies Theorem 1.3:

Theorem 6.3. Suppose that Γ is connected and dim(S(MΓ)) ≥ 4, and in particular
if Γ is infinite-type. Then S(MΓ) is covered by nested locally finite strongly rigid
sets Zi.

6.1. Constructing locally finite strongly rigid sets. We will need the following
simplicial non-embeddings:

Lemma 6.4.

(i) S(M0,4) ∗ S(M0,4) does not embed in S(M0,5) and vice versa.
(ii) S(M0,4) ∗ S(M0,4) and S(M0,5) do not embed in S(M1,2).
(iii) S(M0,6) does not embed in S(M1,3).

Proof.

(i) Suppose S(M0,4)∗S(M0,4) ∼= K3,3 can be embedded via a map f into S(M0,5),
which is isomorphic to the Petersen graph (see Figure 11). Consider the vertex
v = (1, 2) in K3,3. Without loss in generality, we may assume f(v) = (1, 4).
Since both v and f(v) have valence 3, we know that

{(1′, 2′), (1′, 3′), (2′, 3′)} f7−→ {(3, 5), (3, 2), (2, 5)}
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Again, without loss in generality, we may assume that f(1′, 2′) = (3, 5). Since
(1, 3) and (2, 3) are adjacent to (1′, 2′) in K3,3,

{(1, 3), (2, 3)} f7−→ {(2, 4), (1, 2)}
This is not possible since neither (2, 4) nor (1, 2) are adjacent to (3, 2) in the
Petersen graph.

On the other hand, S(M0,5) has
(
5
2

)
= 10 vertices, while S(M0,4) ∗ S(M0,4)

has only 6 vertices, so S(M0,5) cannot embed into S(M0,4) ∗ S(M0,4).
(ii) The graph S(M1,2) a tree (see Figure 16). As seen in Figure 11, both S(M0,4)∗
S(M0,4) and S(M0,5) admit embedded loops, and thus cannot be embedded
into a tree.

(iii) The complex S(M1,3) is contractible [HV04]. On the other hand, S(M0,6)
is a two-dimensional simplicial complex with 25 vertices, 105 edges, and 105
faces, which means its Euler characteristic is 25. Since the Euler characteristic
is greater than two, H2(S(M0,6)) ̸= 0. Suppose that S(M0,6) embeds into
S(M1,3). Then the pair (S(M1,3),S(M0,6)) gives the exact sequence

H3(S(M1,3),S(M0,6))→ H2(S(M0,6))→ H2(S(M1,3)) .

Since S(M1,3) is 2-dimensional the first group vanishes and H2(S(M0,6)) ↪→
H2(S(M1,3)) = 0, a contradiction. □

(1, 2)

(1, 3)

(2, 3)

(1′, 2′)

(1′, 3′)

(2′, 3′)

(3, 5) (3, 4)

(2, 5)(1, 4)

(1, 2)

(4, 5)

(2, 4)

(3, 2) (1, 3)

(1, 5)

Figure 11. On the left is S(M0,4) ∗ S(M0,4) ∼= K3,3. With the
boundary components of each ∂M0,4 labeled 1–4 and 1′–4′, the
pair (i, j) determines the sphere by Lemma 2.20. Similarly, for
S(M0,5), which is pictured on the right and is isomorphic to the
Petersen graph.

Recall that Xη :=
⋃

a∈η link(η \ a) for η ⊂ S(MΓ) a maximal sphere system.

Lemma 6.5. Let Γ be connected and let η ⊂ S(MΓ) be a maximal sphere system
such that |η| ≥ 4. Suppose Yη ⊂ S(MΓ) is a full subcomplex such that

(1) Xη ⊂ Yη,
(2) for a ̸= b ⊂ η, link(η \ {a, b}) ⊂ Yη, unless ea ∪ eb has non-zero rank in ∆η, in

which case Yη contains a subset of link(η \ {a, b}) of size at least 11, and
(3) for a, b, c ⊂ η, if ea∪eb∪ec ∼= K1,3 then link(η\{a, b, c}) ⊂ Yη; if ea∪eb∪ec ∼= K3

then Yη contains a subset of link(η \ {a, b, c}) of size at least 26.
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If f : Yη → S(MΓ′) is a locally injective simplicial map for which fη is maximal,
then MΓ

∼=MΓ′ .

Proof. It suffices to find a maximal sphere system η′ ⊂ S(MΓ′) such that ∆η
∼= ∆η′ .

Since |η| ≥ 4, f is injective on the sets Yη∩link(η\a) = link(η\a), Yη∩link(η\{a, b}),
and Yη ∩ link(η \ {a, b, c}), as each of these sets is contained in the star of some
element of η.

First, assume that ∆η is loop-free and a ∈ η. If efa is a loop in ∆fη then
link(η \ a) ∼= S(M0,4) does not embed into link(fη \ fa) ∼= S(M1,1). Thus, ∆fη is
also loop-free. Now let a, b ∈ η. The edges ea and eb are disjoint in ∆η if and only if
link(η \{a, b}) is isomorphic to S(M0,4)∗S(M0,4) and ea and eb are incident on one
common vertex or two common vertices if and only if link(η \ {a, b}) is isomorphic
to S(M0,5) or S(M1,2), respectively. An analogous statement holds for efa and efb.

The map f restricts to an embedding Yη ∩ link(η \ {a, b}) ↪→ link(fη \ {fa, fb}).
There are three possibilities for the domain of this embedding: Yη ∩ S(M0,4) ∗
S(M0,4) = S(M0,4) ∗ S(M0,4), Yη ∩ S(M0,5) = S(M0,5), or Yη ∩ S(M1,2). We
observe the following embeddings are not possible:

S(M0,5) S(M0,4) ∗ S(M0,4) S(M0,4) ∗ S(M0,4)

S(M0,4) ∗ S(M0,4) (1) S(M0,5) (2) Yη ∩ S(M1,2) (3)

S(M1,2) S(M1,2) S(M0,5)

p

p

p

p

p

p

where (1) and (2) follow from Lemma 6.4, and (3) is true since |Yη ∩S(M1,2)| ≥ 11,
but |S(M0,4) ∗ S(M0,4)|, |S(M0,5)| < 11. The only remaining possibility is that all
links (intersected with Yη) embed into isomorphic copies of themselves. Hence it
follows that link(η \ {a, b}) ∼= link(fη \ {fa, fb}) and ea ∪ eb ∼= efa ∪ efb, without
loss of generality preserving order: i.e. via a graph isomorphism with ea 7→ efa and
eb 7→ efb.

Thus, f |η : ∆η → ∆fη is an edge isomorphism. To obtain a graph isomorphism,
we need only show that f |η does not have a K3,K1,3-pair. Now, ea∪ eb∪ ec ∼= K1,3

if and only if link(η \ {a, b, c}) ∼= S(M0,6) and ea ∪ eb ∪ ec ∼= K3 if and only
if link(η \ {a, b, c}) ∼= S(M1,3) (see Figure 3) and likewise for efa ∪ efb ∪ efc as
well. The restriction f : Yη ∩ link(η \ {a, b, c}) ↪→ link(fη \ {fa, fb, fc}), along
with Lemma 6.4 and that |S(M0,6)

(0)| = 25, implies f |η has no K3,K1,3-pairs.
Therefore, ∆η

∼= ∆fη by Theorem 2.26 and Corollary 2.27.

ea1

eã1

eã2

ea2

eã3

ea3
ea4

eã4

eã1

eã2

eã3
eã4

∆η ∆η̃

Figure 12. On the left the graph ∆η has loops ea incident to a
unique edge eã. On the right, ∆η̃ is the loop-free subgraph.
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Now consider the case where ∆η has loops. Since |η| ≥ 4, no edge in ∆η can
be adjacent to two loops. Hence, if a ∈ η and ea is a loop, then we denote by
ã ∈ η the unique sphere such that ea is adjacent to eã. Define η̃ = η \ η0, where
η0 = {a ∈ η | ea is a loop}. The subgraph ∆η̃ ⊂ ∆η is a graph without loops
(see Figure 12) and η̃, f η̃ are maximal in MΓ \ η0 and MΓ′ \ fη0 respectively. By
the previous case, ∆η̃

∼= ∆fη̃ via an isomorphism that induces f |η̃ on the edges.
Focusing on a ∈ η0 (where ea is a loop) we see that efa ∪ efã is isomorphic to
either two disjoint edges, a loop disjoint from an edge, two edges incident on one
common vertex, a bigon or ea ∪ eã. In the first three cases, link(fη \ {fa, f ã}) is
isomorphic to S(M0,4)∗S(M0,4), S(M1,1)∗S(M0,4) and S(M0,5) respectively. Since
|Yη ∩ link(η \ {a, ã})| ≥ 11, the map f : Yη ∩ link(η \ {a, ã}) ↪→ link(fη \ {fa, f ã})
cannot be an embedding: efa ∪ efã is isomorphic to a bigon or ea ∪ eã.

Let η1 ⊂ η0 be the subset of spheres a ∈ η0 for which efa ∪ efã is a bigon. For
each a ∈ η1, we may perform a flip move fã 7→ ã′ such that efa ∪ eã′ ∼= ea ∪ eã
(see Figure 13). Vertices in ∆fη have valence at most 3, hence no two bigons are
adjacent: we may perform these flips disjointly for each a ∈ η1 to obtain a new
pants decomposition η′ for MΓ′ with ∆η′ ∼= ∆η, as desired. □

a

ã
f−→

fa

ã′

fã

flip−−→

fa

ã′

Figure 13. The flip move in Lemma 6.5.

Remark 6.6. If η is a finite maximal system and |η| ≥ 5, then MΓ
∼=Mn,s \ ∂Mn,s

for some n, s and one verifies that 2n+ s ≥ 6. By Theorem 1.2, there exists a finite
strongly rigid set Yη ⊂ S(MΓ) satisfying the hypotheses of Lemma 6.5, in which
case a locally injective map Yη → S(MΓ′) extends uniquely to an automorphism
S(MΓ)→ S(MΓ′); by Theorem 1.1, this automorphism is induced by a diffeomor-
phism MΓ →MΓ′ .

Suppose that Γ is connected and of infinite or finite type such that dim(S(MΓ)) ≥
5. Let σ ⊂ S(MΓ) be a maximal sphere system and let Ω be the collection of sets
of distinct spheres η = {a, b, c, d, e} ⊂ σ such that

⋃
t∈η et ⊂ ∆σ is connected. For

each η ∈ Ω, denote by Mη the complementary component of σ \ η that contains η
(and in particular is not a pair of pants), and let Yη ⊂ link(σ \ η) ∼= S(Mη) as in
Remark 6.6. Define Zσ ⊂ S(MΓ) to be the full subcomplex induced by the Yη:

Zσ := ⟨Yη⟩η∈Ω .

Note that σ ⊂ Xσ ⊂ Zσ, and that Zσ is topologically locally finite by construction.

Proposition 6.7. Suppose that f : Zσ → S(MΓ′) is a locally injective simplicial
map such that fσ is maximal. Then f extends to a unique automorphism S(MΓ)→
S(MΓ′).

Proof. For η ∈ Ω, let Mfη ⊂MΓ′ denote the complementary component of fσ \ fη
containing fη. By Remark 6.6, f |Yη

extends to a unique isomorphism link(σ \η)→
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link(fσ \ fη), which is induced by a diffeomorphism hη :Mη →Mfη agreeing with
f over Xη ⊂ Yη.

We first prove that f |σ is an edge isomorphism E(∆σ) → E(∆fσ) without a
K3,K1,3-pair. If a, b ∈ σ are such that ea and eb are adjacent in ∆σ, fix η ∈ Ω
such that a, b ∈ η. Then from the above we have ea ∪ eb ∼= ehηa ∪ ehηb = efa ∪ efb,
preserving ordering. A similar argument implies that ea is a loop if and only if efa
is a loop, and prohibits a K3,K1,3-pair (e.g. fix η ⊃ K3). It remains to show that
when ea, eb are non-adjacent, so are efa, efb. Suppose that efa, efb are adjacent
and ea is a loop. As efa is a loop, efb is the unique sphere adjacent to efa. Let
c ∈ σ be a sphere so that ec is adjacent to ea in ∆σ. Since ec and ea are adjacent,
ec∪ea ∼= efc∪efa and efc, efa are adjacent, hence fc = fb; by injectivity b = c and
ea, eb are adjacent. Finally, if neither ea, eb are loops and ea, eb are non-adjacent,
then, since Xσ ⊂ Zσ, both link(σ \ a) ⊂ Zσ and link(σ \ b) ⊂ Zσ. Consequently
link(σ\a)∗link(σ\b) = link(σ\{a, b}) ⊂ Zσ. Now, as in the proof of Lemma 6.5, we
know that link(σ \ b) ∼= S(M0,4) ∗ S(M0,4) does not embed into link(fσ \ {fa, fb})
if efa and efb are adjacent. Hence efa and efb must be non-adjacent.

By Theorem 2.26 and Corollary 2.27, f |σ is induced by an isomorphism ∆σ →
∆fσ. Let h be a diffeomorphism constructed as in Section 3.2; we show that h∗
extends f . For any a, b, c ⊂ σ such that ea ∪ eb ∪ ec ⊂ ∆σ is connected, fix ρ ∈ Ω
containing a, b, c. Then f extends to an isomorphism link(σ \ ρ) → link(fσ \ fρ),
which suffices to apply Remark 3.6: h∗ agrees with f over Xσ. For η ∈ Ω, h∗ agrees
with f on Xη = Xσ∩ link(σ\η), hence by Remark 3.9 (h|Mη

)∗ = (hη)∗. Since (hη)∗
agrees with f over Yη, we conclude. Finally, to show uniqueness, by Theorem 1.1
any isomorphism extending f is induced by a diffeomorphism g that agrees with h∗
over Xσ: g∗ = h∗ again by Remark 3.9. □

If σ, σ′ are maximal sphere systems that differ by a flip move, then Zσ ∪ Zσ′

exhibits the same rigidity. Suppose that f : Zσ∪Zσ′ → S(MΓ′) is a locally injective
simplicial map and fσ, fσ′ are maximal. Apply Lemma 3.7: the isomorphism
extensions with respect to σ, σ′ are identical. More generally, let P be a finite
collection of maximal sphere systems for which any two ρ, ρ′ ∈ P differ by a sequence
of successive flip moves in P. Then ZP :=

⋃
ρ∈P Zρ is strongly rigid over maps f

which preserve the maximality of all ρ ∈ P. Let Pi be a nested family of such sets
such that every sphere in S(MΓ) is contained in some ρ ∈ Pi for some i. Then ZPi

is a (nested) exhaustion of S(MΓ) by topologically locally finite subcomplexes that
are strongly rigid over maximal maps, proving Theorem 6.3.

6.2. Non-existence of rigid sets. We now show that for all infinite-type graphs
Γ, there is no way to strengthen Theorem 6.3 to remove the assumption that the
locally injective maps involved send maximal sphere systems to maximal sphere
systems. We do this by producing nonsurjective embeddings of S(MΓ) into itself so
that the image does not contain any sphere systems which are maximal in MΓ. It
follows immediately from this that no subcomplex of S(MΓ) can be strongly rigid.

The construction below is inspired by a similar construction for surfaces, showing
that the curve graph of a hyperbolic surface embeds into the curve graph of the
same surface but with one extra puncture: see Theorem 2.3 of [RS09]. We start by
discussing two technical lemmas about pairs of spheres in normal form. The first
is a consequence of Proposition 1.1 in [Hat02].
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Lemma 6.8. Suppose a and b are essential spheres in MΓ whose homotopy classes
can be realized disjointly. Fix a maximal sphere system σ. Then a and b contain
disjoint homotopy representatives which are in normal form with respect to σ.

Lemma 6.9. Suppose a and a′ are homotopic spheres in normal form with respect
to a maximal sphere system σ. Let p be a point in a component of σ not contained
in either a or a′. Then there is a homotopy from a to a′ whose image does not
intersect p.

Proof. This follows directly from the proof of Proposition 1.2 in [Hat02]. Namely,
we first take two homotopic lifts ã and ã′ of a and a′, respectively, as well as a lift
σ̃ of σ. Following the result in [Hat02], one can first homotope ã via a homotopy
whose image is disjoint from all the lifts of p so that intersection of each piece of

ã with σ̃ agrees with the intersection of ã′ with σ̃ in the component of M̃Γ \ σ̃
that they both lie in. This homotopy can be built by choosing a neighborhood of
each element of σ̃ so that the intersections of ã and ã′ with each neighborhood are
either both empty or a cylinder. Note that Proposition 1.2 in [Hat02] implies that
such neighborhoods exist, as the intersections of ã and ã′ with the components of

M̃Γ \ σ̃ agree combinatorially (that is, the pieces that show up in each component

of M̃Γ \ σ̃ are the same for both spheres). Now, in each such neighborhood with
nonempty intersection with ã and ã′, one can slide ã so that the desired intersection
agreement holds. In each neighborhood containing a lift of p, such a homotopy can
be chosen to avoid this lift as the complement of a point in S2 is simply connected.

Now that the intersection circles of ã and ã′ with σ̃ agree, one can follow the
argument of Proposition 1.2 in [Hat02] verbatim to homotope ã to ã′ via a homotopy
supported in the complement of σ̃, finishing the proof. □

The desired embedding from S(MΓ) into itself will be factored into two maps,
the first given by the following lemma. Given a locally finite graph Γ, letM∗

Γ denote
the doubled handlebody MΓ with an extra puncture.

Lemma 6.10. For any locally finite graph Γ, there is a simplicial embedding of
S(MΓ) into S(M∗

Γ).

Proof. Put every element of S(MΓ) in normal form with respect to some maximal
system σ. Place the extra puncture of M∗

Γ in a component s of σ so that the punc-
ture is not contained in any of the fixed normal form representatives of the elements
of S(MΓ). Such a choice for the puncture can be made since the intersections of all
the spheres with s is a countable collection of embedded circles, which is measure
0 in s (one needs to isotope the normal form representative of s off itself by a small
isotopy as well, so the puncture is disjoint from it too).

Then Lemma 6.8 implies that given any two spheres in normal form a and b
which can be realized disjointly in MΓ, there are spheres a′, b′ also in normal form
homotopic to a, b, respectively, which disjoint from each other. From Lemma 6.9
we obtain homotopies (and thus isotopies by [Lau73]) in M∗

Γ from a to a′ and from
b to b′. In particular, it follows that two spheres which can be realized disjointly in
MΓ can also be realized disjointly in M∗

Γ, if the elements of S(MΓ) are realized in
normal form first, and then included into M∗

Γ as above. In particular, this induces
a simplicial embedding of S(MΓ) into S(M∗

Γ), as desired. □
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Proposition 6.11. Suppose Γ is an infinite-type graph. Then there is a simplicial
embedding of S(MΓ) into itself so that the image of every maximal system is not
maximal.

Proof. We can classify infinite-type graphs into three types.

(1) Graphs with infinite rank.
(2) Finite rank graphs with infinitely many isolated ends..
(3) Finite rank graphs whose space of ends is a Cantor set along with possibly

finitely many isolated ends.

To see this, suppose Γ is not of the first two types. Then as we are assuming Γ
is infinite-type, it must have an infinite space of ends. It follows by a theorem of
Brouwer that, if E′ is the space of ends of Γ without its isolated ends, then E′

is homeomorphic to a Cantor set[Bro10]. This is because E′ is compact, perfect,
totally disconnected, and metrizable.

We choose a separating sphere a in each case. For type (1) graphs, let a cut
off a copy of M1,1. For type (2) graphs, let a cut off 2 isolated ends. Finally, for
type (3) graphs, let a cut off a Cantor set of ends on one side. Then there is an
embedding S(M∗

Γ) into S(MΓ) which is given by removing a fromMΓ and choosing
a diffeomorphism from M∗

Γ to a component of MΓ \ a, sending the extra puncture
of M∗

Γ to the puncture corresponding to a. Such a diffeomorphism exists, as in any
case the characteristic triple of M∗

Γ is the same as one of the two components of
MΓ \ a.

The composition of the embedding from Lemma 6.10 and that from the previous
paragraph sends S(MΓ) to a subcomplex of itself so that in either case, a is not in the
image of this map and the image of every sphere can be realized disjointly from a.
In particular, every maximal sphere system is sent to something not maximal. □

7. Geometric rigidity in low complexity cases

In this section we consider the existence of finite rigid sets of S(Mn,s) for n, s
not covered by Theorem 1.2 The cases are M0,4,M0,5,M1,0,M1,1,M1,2,M1,3,M2,0,
and M2,1. In the first four cases the complex is finite so the existence of finite rigid
sets is trivial. It follows from Proposition 26 of [BL24a] that S(M2,0) has no finite
rigid sets.

The remaining cases are then M1,2,M1,3, and M2,1. We give a direct argument
in the first case.

Lemma 7.1. The graph S(M1,2) is geometrically rigid. On the other hand, S(M1,2)
has no finite rigid sets.

Proof. That S(M1,2) is geometrically rigid follows directly from Theorem 1.1. To
show that it has no finite rigid sets, we will show that S(M1,2) is isomorphic to the
graph in Figure 16, and deduce that this graph has no finite rigid sets.

Given a non-separating sphere a of M1,2, there are exactly three spheres disjoint
from a. To see why, note that M1,2 \ nbd(a) ∼= M0,4, which has exactly three
distinct spheres, say a1, a2, and b. See Figure 14. Observe that a1, a2 and b are
disjoint from a, so in S(M1,2), a is a trivalent vertex. The spheres a1 and a2 are
non-separating, and b is separating. The complementary components of b are a pair
of pants and a one-holed torus. A pair of pants contains no essential spheres, and
a one-holed torus contains a single homotopy class of spheres. Consequently, any
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essential sphere in M1,2 disjoint from a must intersect b. Therefore, b has valence
one in the sphere complex. Further, this separating sphere is only disjoint from S.

B1 B2

a

−→

b

a2a1
a− a+

B1
B2

Figure 14. On the left, M1,2 is pictured with boundary compo-
nents B1 and B2 and a non-separating sphere a. To visualize the
spheres a1, a2, and b, it is useful to cut along a, as seen on the
right.

For completeness, we show explicitly that S(M1,2) is an infinite graph. Let h be
a homeomorphism which pushes one of the boundary components of M1,2 around
the manifold once, and let a be a fixed non-separating sphere. Then hn(a) is not
homotopic to a for any n ≥ 1. If it were, they would have lifts in the universal cover

M̃1,2 which are homotopic. But it is clear that the decompositions of the boundary

components of M̃1,2 induced by any lifts of a and hn(a) must differ, and thus they
cannot be homotopic. See Figure 15.

a h(a)

Figure 15. The spheres a and h(a) cannot be homotopic as their
none of the lifts in the universal cover are. A similar picture works
for a and hn(a) for all n.

Thus, S(M1,2) is an infinite graph consisting of a collection of trivalent vertices,
each of which is connected to two other trivalent vertices and one valence 1 vertex.
Such a graph is isomorphic to the real line with a vertex at each integer point
with a another edge attached at each vertex connecting to a valence 1 vertex, as in
Figure 16.

Suppose X is a finite rigid subgraph for S(M1,2). Then X must be larger than
a point, or else one could send a non-separating vertex to a separating vertex or
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vice versa. It must also be connected, or else one could embed X in many ways
by fixing the image of one component and letting another vary, and all but finitely
many of these maps cannot be induced by an automorphism of S(M1,2). Thus
assume X is connected. By the structure of S(M1,2) there must be some vertex

v ∈ X(0) which is a non-separating sphere which is connected by an edge to a vertex
w ∈ X(0) which is valence 1 in X. Then we can embed X into S(M1,2) so that v
is sent to itself, and w is sent to a separating sphere if it is non-separating, and to
a non-separating sphere if it is separating. This is a contradiction, so S(M1,2) has
no finite rigid sets. □

. . . . . .

Figure 16. The graph S(M1,2).

We ask the following question for the final remaining cases.

Question 7.2. Do S(M1,3) and S(M2,1) have finite rigid sets?
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[HMV18] Jesús Hernández Hernández, Israel Morales, and Ferrán Valdez. Isomorphisms be-

tween curve graphs of infinite-type surfaces are geometric. The Rocky Mountain Jour-
nal of Mathematics, 48(6):1887–1904, 2018.

[HV04] Allen Hatcher and Karen Vogtmann. Homology stability for outer automorphism
groups of free groups. Algebraic & Geometric Topology, 4(2):1253–1272, 2004. Pub-

lisher: Mathematical Sciences Publishers.



34 HILL, KOPRESKI, RECHKIN, SHAJI, & UDALL

[Iva97] Nikolai V Ivanov. Automorphisms of complexes of curves and of teichmuller spaces.

International Mathematics Research Notices, 1997(14):651–666, 1997.

[Iva06] Nikolai V. Ivanov. Fifteen problems about the mapping class groups, 2006.
[Lau73] Franccois Laudenbach. Sur Les 2-Spheres D’une Variete de Dimension 3. Annals of

Mathematics, 97(1):57–81, 1973.

[Luo99] Feng Luo. Automorphisms of the complex of curves. arXiv preprint math/9904020,
1999.

[RS09] Kasra Rafi and Saul Schleimer. Covers and the curve complex. Geometry & Topology,

13(4):2141–2162, May 2009.
[Uda24] Brian Udall. The sphere complex of a locally finite graph. arXiv preprint

arXiv:2407.07976, 2024.


	1. Introduction
	1.1. Motivation
	1.2. Outline of paper.
	Acknowledgements

	2. Preliminaries
	2.1. Spheres in 3-manifolds
	2.2. Edge isomorphisms and rigidity

	3. A proof of the main theorem
	3.1. Dual graphs of pants decompositions
	3.2. Constructing a diffeomorphism

	4. Rigidity of the sphere complex for finite-type doubled handlebodies with S2-boundaries
	4.1. Constructing a geometrically rigid set X.
	4.2. Geometric rigidity of X for Mn,s
	4.3. Exhaustion by geometrically rigid sets

	5. Another proof of thm:IvanovRigidity0
	5.1. Links of sphere systems
	5.2. Diffeomorphisms from automorphisms

	6. Locally finite strongly rigid sets
	6.1. Constructing locally finite strongly rigid sets
	6.2. Non-existence of rigid sets

	7. Geometric rigidity in low complexity cases
	References

