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Abstract. Let Σ be a compact, orientable surface, and let Γ be a rela-

tion on π0(∂Σ) such that the prescribed arc graph A(Σ,Γ) is Gromov-

hyperbolic and non-trivial. We show that asdimA(Σ,Γ) ≥ −χ(Σ) − 1,

from which we prove that the asymptotic dimension of the grand arc

graph is infinite. More generally, we prove that any connected, Gromov-

hyperbolic multiarc and curve graph M preserved by PMod(Σ) with

bounded geometric intersection over edges has asdimM ≥ g−⌈ 1
2
χ(Σ)⌉,

and that a broad class of multiarc and curve graphs on infinite-type

surfaces has infinite asymptotic dimension.

1. Introduction

Let Σ be a compact, orientable surface with boundary, and let Γ be a

relation on π0(∂Σ). A simple, essential arc a in Σ is Γ-allowed if it joins

boundary components in Γ. The Γ-prescribed arc graph A(Σ,Γ) is the full

subgraph of A(Σ) spanned by isotopy classes of Γ-allowed arcs. We assume

throughout that A(Σ,Γ) is non-trivial, i.e. χ(Σ) ≤ −1, Σ ̸= Σ3
0, and Γ ̸= ∅.

We suppose A(Σ,Γ) is δ-hyperbolic. If Σ = Σ4
0, then A(Σ,Γ) ⊂ A(Σ4

0) is

a quasi-tree and asdimA(Σ,Γ) = 1. Otherwise, we prove a lower bound:

Theorem 1.1. If A(Σ,Γ) is δ-hyperbolic, then −χ(Σ)−1 ≤ asdimA(Σ,Γ).

For Ω an infinite-type surface with finite grand splitting, let G(Ω) denote

the grand arc graph on Ω [BNV22]. By applying Theorem 1.1, we obtain

the following:

Theorem 1.2. If G(Ω) is non-empty and connected, then asdimG(Ω) = ∞.

More generally, let M be any connected multiarc and curve graph on a

surface Ω that is preserved by PMod(Ω), admits a (compact) witness, and

in each witness has uniformly bounded geometric intersection over edges.

Theorem 1.3. If Ω is compact and M is δ-hyperbolic, then asdimM ≥
g(Ω)− ⌈12χ(Ω)⌉. If Ω is infinite-type, then asdimM = ∞.
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In Section 2, we use the theory of alignment-preserving maps [DT17]

to show that the Gromov boundary ∂A(Σ,Γ) contains ∂A(Σ). From re-

sults of Gabai [Gab14] and Schleimer [Po17] we obtain a compact subspace

Z ⊂ ∂A(Σ,Γ) of dimension −χ(Σ)−2. We then prove that asdimA(Σ,Γ) ≥
dimZ + 1, extending a result for proper δ-hyperbolic spaces, whence Theo-

rem 1.1 follows.

In Section 3, we show that witness subsurfaces W ⊂ Ω for G(Ω) of ar-

bitrarily large complexity admit prescribing relations Γ such that A(W,Γ)

quasi-isometrically embeds into G(Ω), where Ω is an infinite-type surface

with finite grand splitting. In fact, W may be chosen so that either A(W,Γ)

has large coarse rank or it is δ-hyperbolic: Theorem 1.2 thus follows from

Theorem 1.1 and the monotonicity of asymptotic dimension.

Section 4 generalizes the techniques in Sections 2 and 3 to a broad class

of simplicial graphs, called admissible combinatorial models, which include

prescribed arc graphs, the grand arc graph, the 1-skeleton of the marking

complex, and many other multiarc and curve graphs. In addition to tools

developed in Section 2, we utilize properties of the hierarchically hyperbolic

structure of such graphs in the finite-type setting [Kop23a]. Theorem 1.3

follows from the analogous statements for admissible combinatorial models.

Remark. For the reader interested in only Theorem 1.3 (which does imply

Theorem 1.2 and a weaker version of Theorem 1.1, albeit with more tech-

nology than necessary), it suffices to read Sections 2.1 and 4.

1.1. Background. An orientable surface Ω has infinite topological type if

its fundamental group is not finitely generated, or equivalently if int(Ω) has

infinite genus or infinitely many punctures (we typically assume ∂Ω = ∅).

Beginning with a 2009 blog post of Calegari [Cal09], mapping class groups of

infinite-type surfaces have been objects of considerable contemporary study:

see [AV20, CPV21] for surveys of recent results and open problems.

An infinite-type surface Ω is classified by its genus and end space, which is

obtained as the inverse limit of the complementary components of a compact

exhaustion [Ric63]; its mapping class group Mod(Ω) is a non-compactly

generated Polish group. Given mild assumptions, Mann and Rafi [MR20]

classify when Mod(Ω) admits a generating set that is coarsely bounded (CB),

or bounded in any left-invariant metric, and hence a well defined quasi-

isometry type in the sense of [Ros14]. Mann–Rafi also define a preorder on

the ends of Ω corresponding to topological complexity. We denote by M (Ω)

the non-empty subspace of maximal ends with respect to this preorder.

When Mod(Ω) is locally CB (and in particular when it is CB-generated),

Bar-Natan and Verberne define the grand splitting S(Ω), a canonical and

Mod(Ω)-invariant partition of M (Ω) into finitely many disjoint sets Ei ∈
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S(Ω), each of which is either a singleton or Cantor set. A grand arc in Ω

is a bi-infinite simple arc converging to ends in distinct sets in the grand

splitting [BNV22].

Definition 1.4 (Bar-Natan–Verberne). Let Ω be an infinite-type surface.

The grand arc graph G(Ω) is the simplicial graph with vertices corresponding

to isotopy classes of grand arcs and edges determined by disjointness.

The grand arc graph G(Ω) is a combinatorial model for Ω which gen-

eralizes the ray graph defined by Calegari [Cal09] on S2 \ Cantor set and

for surfaces with stable endspace extends the omnipresent arc graph de-

fined by Fanoni–Ghaswala–McLeay [FGM21]. Mod(Ω) acts naturally on

G(Ω) by isometries. Bar-Natan–Verberne classify the δ-hyperbolicity of G(Ω)
and show that when G(Ω) is δ-hyperbolic, the action of Mod(Σ) is quasi-

continuous, extends continuously to ∂ G(Ω), and has loxodromic elements.

Notation. We typically denote by Σ a compact, orientable surface, and

by Ω an arbitrary orientable surface that may have either finite or infinite

topological type.

1.1.1. Prescribed arc graphs, witnesses. Prescribed arc graphs were defined

by the author in [Kop23b] as combinatorial models of finite-type surfaces

that quasi-isometrically embed into G(Ω). Excepting trivial cases they are

connected and infinite-diameter and their δ-hyperbolicity is fully determined

by the prescribing relation Γ:

Theorem 1.5 ([Kop23b, Thm. 1.3]). Assume that A(Σ,Γ) is non-trivial.

Then if χ(Σ) ≥ −2 or Σ = Σn+1
0 and Γ is a n-pointed star then A(Σ,Γ) is

δ-hyperbolic. Otherwise, A(Σ,Γ) is (uniformly) δ-hyperbolic if and only if Γ

is not bipartite.

We note that if Γ ⊂ Γ′ then every Γ-allowed arc is Γ′-allowed, which

induces a simplicial map ι : A(Σ,Γ) → A(Σ,Γ′). This map is 3-coarsely

surjective [Kop23b, Lem. 2.10]. In particular, since the prescribed arc graph

with the complete relation is exactly A(Σ), A(Σ,Γ) always coarsely surjects

onto A(Σ).

A compact, essential (π1-injective, non-peripheral) non-pants subsurface

is a witness for a given combinatorial model if it intersects every vertex. We

call a witness W ⊂ Σ for A(Σ,Γ) a Γ-witness.

1.1.2. Boundaries of non-proper δ-hyperbolic spaces. In general, if A(Σ,Γ)

is non-trivial then it is non-proper, and likewise for any admissible combi-

natorial model with sufficient complexity. For a geodesic δ-hyperbolic space

X, by ∂X we always mean the sequential boundary of X; when X is non-

proper, ∂X may be non-compact. In this setting, ∂X does not coincide
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with the geodesic boundary, but is instead homeomorphic to the quasi-

geodesic boundary [Has22]. We will make use of the following statement

by Hasegawa, from a construction of Kapovich–Benakli [KB02, Rmk. 2.16]:

Remark 1.6 ([Has22, Prop. 4]). Fixing x0 ∈ X, for any z ∈ ∂X there exists

a (1+4δ, 12δ)-quasi-geodesic ray ρ : [0,∞) → X based at x0 with [ρ(n)] = z.

Any quasi-isometry between geodesic δ-hyperbolic spaces X → Y extends

to a map X ∪ ∂X → Y ∪ ∂Y that restricts to a homeomorphism on the

boundaries (e.g. applying the proof of [DK18, Thm. 11.108]). Given x, y ∈
X ∪ ∂X, let (x|y)x0 denote their Gromov product at x0. We occassionally

omit the basepoint, which is changeable up to bounded error.

1.1.3. Ending laminations. Let χ(Σ) ≤ −1, hence fix a (finite-area) hyper-

bolic metric for Σ with geodesic boundary. We recall that a geodesic lamina-

tion on Σ is a closed subset L ⊂ Σ which decomposes (in fact, uniquely) into

pair-wise disjoint simple geodesic leaves. L is minimal if it has no proper

sublaminations, or equivalently, if every leaf is dense in L.

Definition 1.7. Given a connected subspace X ⊂ Σ with non-trivial π1-

image, if Y ⊂ Σ is the smallest essential subsurface containing X up to

isotopy, then Y is filled by X. If Y = Σ, then X is filling.

Definition 1.8. The space of ending laminations EL(Σ) is the set of filling
minimal laminations on Σ, equipped with the coarse Hausdorff topology.

Similarly, let EL0(Σ) denote the space of minimal laminations that fill a

subsurface containing ∂Σ, again with the coarse Hausdorff topology.

EL(Σ) and EL0(Σ) give explicit descriptions for the hyperbolic boundaries

of C(Σ) and A(Σ), respectively (see [Kla18] and [Po17]):

Theorem 1.9 (Klarreich, Schleimer). EL(Σ) ∼= ∂C(Σ) and EL0(Σ) ∼= ∂A(Σ).

1.1.4. Markings. In Section 4, we will make use of markings on surfaces in

the sense of [MM00]. For an essential simple closed curve a ⊂ Ω, let C(a)
denote the curve graph of the annulus with core a and πa the corresponding

(set-valued) subsurface projection.

Definition 1.10. A marking µ = {(ai, ti)} on a surface Ω is an essential

simple multicurve {ai}, denoted baseµ, along with a collection of (possibly

empty) diameter 1 subsets ti ⊂ C(ai); for ai ∈ baseµ, let transµ(ai) = ti
denote the associated transversal.

A marking µ is complete if baseµ is a pants decomposition and every

transversal is non-empty. If µ is complete and for each component (a, t) ∈ µ

t = πab for some simple closed curve b ̸= a disjoint from baseµ \ {a} that

intersects a minimally, then µ is clean.
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Let ∆ ⊂ Ω be an essential, non-pants subsurface. Like multicurves, mark-

ings have a subsurface projection π∆(µ) ⊂ C(∆). If ∆ is an annulus par-

allel to some a ∈ baseµ, then π∆(µ) := transµ(a) ⊂ C(∆). Otherwise,

π∆(µ) := π∆(baseµ). We say ∆ intersects µ if and only if π∆(µ) ̸= ∅. For

an essential simple closed curve c ⊂ Ω, again let πc(µ) denote the projection

to the annulus with core c.

Definition 1.11. Let µ, ν be two markings on Ω. Then their geometric

intersection number i(µ, ν) is defined as follows:

i(µ, ν) := i(baseµ, base ν) +
∑

a∈baseµ∪base ν
diamC(a)(πaµ ∪ πaν)

1.1.5. Alignment-preserving maps. We briefly recall the theory of alignment-

preserving maps from [DT17]. Let X be a geodesic metric space. Then a

triple (x, y, z) ∈ X3 is K-aligned if d(x, y) + d(y, z) ≤ d(x, z) +K. A Lips-

chitz map between geodesic metric spaces f : X → Y is coarsely alignment

preserving if there exists K ≥ 0 for which f maps any 0-aligned triple in X

to a K-aligned triple in Y .

Suppose that f : X → Y is a coarsely alignment preserving map between

geodesic δ-hyperbolic spaces. Then we define ∂YX ⊂ ∂X to be

∂YX := {[γ] ∈ ∂X γ : R+ → X quasi-geodesic, diamY (fγ(R+)) = ∞}.

Theorem 1.12 (Dowdall–Taylor, [DT17, Thm. 3.2]). Let f : X → Y be

a coarsely surjective, coarsely alignment preserving map between geodesic δ-

hyperbolic spaces. Then f admits an extension to a homeomorphism ∂f :

∂YX → ∂Y such that if xn → ω ∈ ∂YX, then f(xn) → ∂f(ω).

2. Asymptotic dimension of A(Σ,Γ)

When Σ = Σ4
0, then A(Σ,Γ) ⊂ A(Σ4

0) is an infinite-diameter connected

subgraph of a quasi-tree, hence likewise a quasi-tree: asdimA(Σ,Γ) = 1.

For Σ ̸= Σ4
0, we first prove EL0(Σ) ∼= ∂A(Σ) ⊂ ∂A(Σ,Γ) for Γ not bipartite.

Lemma 2.1. If Γ is not bipartite then for any Γ′ ⊃ Γ the induced coarse sur-

jection ι : A(Σ,Γ) → A(Σ,Γ′) is uniformly coarsely alignment-preserving.

Proof. We first claim that if Γ is not bipartite, then geodesics in A(Σ,Γ) are

uniformly (independent of Γ) Hausdorff close to unicorn paths with coarsely

the same endpoints, and vice versa. If Γ is not bipartite and if Σ = Σ2
1 then

Γ is not two loops, then the claim holds by [Kop23b, §3]. If instead Σ = Σ2
1

and Γ = ℓ1 ∪ ℓ2 is two loops, then ι : A(Σ, ℓ1) → A(Σ,Γ) is a quasi-isometry

by [Kop23b, Lem. 5.2] and we apply the Morse lemma. We observe that if

Γ is not bipartite then neither is Γ′.
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We claim that for any geodesic γ between a, b ∈ A(Σ,Γ), ιγ is uniformly

Hausdorff close to a geodesic between ι(a), ι(b), whence the proof follows.

Let γ′ be a unicorn path close to γ, in the sense above. ι is Lipschitz, hence

ιγ, ιγ′ are close; since ιγ′ is a unicorn path in A(Σ,Γ′), choose a geodesic

γ′′ close to ιγ′. By the Morse lemma, there exists a geodesic γ′′′ between

ι(a), ι(b) that is close to γ′′, hence close to ιγ. □

Applying Theorem 1.12, we obtain the desired embedding.

Corollary 2.2. If Γ is not bipartite and Γ′ ⊃ Γ, then there exists an em-

bedding (∂ι)−1 : ∂A(Σ,Γ′) → ∂A(Σ,Γ). □

By [Kop23b, §5], if Σ ̸= Σ4
0 and A(Γ,Σ) is δ-hyperbolic, then (i) Σ = Σn+1

0

and Γ is an n-pointed star, (ii) Σ = Σ2
1 and Γ is a non-loop edge, or (iii) Γ is

not bipartite. In case (i), by [Kop23b, Lem. 5.4] A(Σ,Γ) is quasi-isometric

to A(Σ, ℓ0), where ℓ0 is a single loop and hence not bipartite. Thus for cases

(i) and (iii), Corollary 2.2 implies ∂A(Σ) ⊂ ∂A(Σ,Γ). In case (ii), every

Γ-witness is in fact a witness for the usual arc graph: by [Kop23a] A(Σ,Γ)

and A(Σ) have the same quasi-isometry type, hence ∂A(Σ,Γ) ∼= ∂A(Σ).

Proposition 2.3. Let Σ ̸= Σ4
0 and A(Σ,Γ) be δ-hyperbolic. ∂A(Σ) ∼=

EL0(Σ) embeds canonically into ∂A(Σ,Γ). □

2.1. A lower bound. From [Gab14], we have the following:

Theorem 2.4 (Gabai). Let S be the (n + 4)-times punctured sphere for

n ≥ 0. Then EL(S) is homeomorphic to the n-dimensional Nöbeling space.

For any Σ with χ(Σ) ≤ −2, let n = n(Σ) = −χ(Σ) − 2 and let Γ be a

prescribing relation such that A(Σ,Γ) is δ-hyperbolic. We may choose an

essential (n + 4)-punctured sphere S that contains all of the punctures of

Σ, thus EL(S) ⊂ EL0(Σ) ∼= ∂A(Σ). Then applying Proposition 2.3 and

Theorem 2.4, ∂A(Σ,Γ) contains the n-dimension Nöbeling space, and in

particular, a compact subspace Z ⊂ EL(S) of topological dimension n by

the universal embedding property of Nöbeling spaces [Nöb30].

For the remainder of the section, we will prove the following generalization

of a result for proper δ-hyperbolic spaces (e.g. [BL08, Prop. 6.2]):

Proposition 2.5. Let X be a geodesic δ-hyperbolic space with Z ⊂ ∂X

compact. Then asdimX ≥ dimZ + 1.

Since ∂A(Σ,Γ) contains a n(Σ)-dimensional compact subspace for χ(Σ) ≤
−2, Theorem 1.1 follows (vacuously for χ(Σ) > −2).

By δ-hyperbolic, we mean that geodesic triangles are δ-slim. Let X be

a geodesic δ-hyperbolic space and let Z ⊂ ∂X be compact. A metric d :
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∂X × ∂X → [0,∞) is visual if there exist k1, k2 and a > 0 such that

k1a
−(ξ|ξ′) ≤ d(ξ, ξ′) ≤ k2a

−(ξ|ξ′).

Such metrics always exist [BH99, Prop. III.H.3.21] and are compatible with

the usual topology on the (sequential) boundary: d(ξi, ξ) → 0 if and only if

(ξi|ξ) → ∞, which is equivalent to ξi → ξ.

Notation. Where unambiguous, we denote by |xx′| the distance between

x, x′ ∈ X a metric space. Given a specified basepoint o ∈ X, let |x| := |ox|.

Definition 2.6. For (Z, d) a bounded metric space, the hyperbolic cone

CoZ is the topological cone Z × [0,∞)/Z ×{0} endowed with the following

metric. Let µ = π/diam(Z). For any x = (z, t), x′ = (z′, t′) ∈ CoZ, consider

a geodesic triangle ōx̄x̄′ ⊂ H2 with |ōx̄| = t, |ōx̄′| = t′, and ∠ō(x̄, x̄
′) = µ|zz′|.

Then let |xx′| := |x̄x̄′|.

This metric is compatible with the usual topology on CoZ. In addition,

CoZ is δ-hyperbolic, Z ↪→ ∂ CoZ via the geodesic rays γz : t 7→ (z, t), and

d is visual for Z ⊂ ∂ CoZ with respect to CoZ [Buy06, Prop. 6.1]. We fix

o = Z ×{0} as a basepoint for CoZ. Analogously to [Buy06, Prop. 6.2], we

have the following:

Lemma 2.7. Let X be a geodesic δ-hyperbolic space and let Z ⊂ ∂X be

compact. Then CoZ quasi-isometrically embeds into X.

Proof. Fix a basepoint x0 ∈ X and let δ′ = δ(CoZ). Since d is visual for

both X and CoZ, up to rescaling X we may assume that (z|z′)x0 and (z|z′)o
are uniformly close for all z, z′ ∈ Z. For each z ∈ Z, fix a representative

(κ0, 12δ)-quasi-geodesic ray ρz ∈ z eminating from x0 by Remark 1.6, where

κ0 = 1 + 4δ. Let ι : CoZ → X be the map (z, t) 7→ ρz(t).

Since γz ∈ z is geodesic, (z|γz(t))o > |γz(t)|− δ′ and |γz(t)| = t. Likewise,

since ρz ∈ z is (κ0, 12δ)-quasi-geodesic, (z|ρz(t))x0 > |ρz(t)| −M − δ, where

M = M(κ0, 12δ) is the Morse constant, and |ρz(t)| = κz(t)t + Oδ(1) with
1
κ0

≤ κz(t) ≤ κ0. Let y = (z, t), y′ = (z′, t′) ∈ CoZ. By [BS00, Lem. 5.1],

we have

|yy′| = |γz(t)γz′(t′)|
= |γz(t)|+ |γz′(t′)| − 2min{|γz(t)|, |γz′(t′)|, (z|z′)o}+Oδ′(1)

= t+ t′ − 2min{t, t′, (z|z′)o}+Oδ′(1)

and similarly,

|ι(y)ι(y′)| = |ρz(t)ρz′(t′)|
= κz(t)t+ κz′(t

′)t′ − 2min{κz(t)t, κz′(t′)t′, (z|z′)x0}+Oδ(1).

ι is a quasi-isometric embedding. □



8 THE ASYMPTOTIC DIMENSION OF THE GRAND ARC GRAPH IS INFINITE

Applying the argument in [BL08, Prop. 6.5], we obtain that asdimCoZ ≥
dimZ + 1. Proposition 2.5 then follows from Lemma 2.7. //

3. Asymptotic dimension of G(Ω)

We prove Theorem 1.2. Let Ω be a surface of infinite topological type

with finite grand splitting S(Ω).

Definition 3.1. An essential, connected, compact subsurface Σ ⊂ Ω is fully

separating if every component of ∂Σ is separating.

Any compact subsurface can be enlarged to one that is fully separating: e.g.

we may glue 1-handles between boundary components adjacent to the same

complementary component and take the compact surface filled by the result.

Lemma 3.2. Suppose that Σ ⊂ Ω is a fully separating non-annular witness

for G(Ω) and |S(Ω)| = m. There exists a minimally m-partite relation

Γ on π0(∂Σ) such that A(Σ,Γ) quasi-isometrically embeds into G(Ω). In

particular, Γ is not bipartite if |S(Ω)| > 2.

Proof. Since Σ is a witness for G(Ω), it must separate distinct sets in S(Ω).
In particular, each boundary component is adjacent to a complementary

component containing ends in at most one set in S(Ω). Color each compo-

nent c ∈ π0(∂Σ) with the corresponding set e(c) ∈ S(Ω), if one exists; let Γ

be the complete m-partite relation on these colors (components without a

corresponding class are left isolated).

Fix a hyperbolic metric on Σ. For each colored boundary component

c, choose a parameterization c : [0, 1) → Σ and a simple ray ρc disjoint

from int(Σ) with origin c(0) and converging to an end in e(c). Let a ∈
A(Σ,Γ) be an arc that terminates on c1, c2 ∈ π0(∂Σ). Let α be the geodesic

representative for a with endpoints ci(ti) and define δi = ci|[0,ti] to be the

subpath of ci between ci(0) and ci(ti). Let α
† denote the extension of α from

both endpoints by δ̄i ∗ ρci , for i = 1, 2 as appropriate. α† is a simple arc

converging to ends in e(c1), e(c2) respectively, which are distinct in S(Ω) by
our choice of Γ. α† is a grand arc. The map a 7→ [α†] preserves disjointness

hence extends to a simplicial (1-Lipschitz) map ψ : A(Σ,Γ) → G(Ω).
We show that ψ is a quasi-isometric embedding by constructing a coarse

Lipschitz retraction π : G(Ω) → A(Σ,Γ). For a grand arc w ∈ G(Ω), fix
a representative ω that is geodesic in Σ. Let ω± denote the first and last

intersections of ω with Σ and let ω̂ denote the shortest path between ω−

and ω+ in (ω∩Σ)∪∂Σ. Since ω converges to maximal ends distinguished by

S(Ω), ω± lie on boundary components with distinct colors: isotoping ω̂ into

the interior of Σ rel ω±, ω̂ is Γ-allowed and we define π : w 7→ [ω̂]. From the

constructions of ψ, π, it is immediate that πψ is identity on A(Σ,Γ). We
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verify that π is Lipschitz. Let w,w′ ∈ G(Ω) be disjoint grand arcs and let

π(w) = [ω̂] and π(w′) = [ω̂′] as above. Since ω̂ is constructed as a shortest

path, it contains at most |π0(∂Σ)|−1 segments that are components of ω∩Σ.
Each of these segments intersects ω̂′ at most twice and in subsegments of ω̂′

parallel to ∂Σ, and the same statement holds exchanging ω̂ and ω̂′. Thus

i(ω̂, ω̂′) ≤ 4|π0(∂Σ)|−4. Finally, since d([ω̂], [ω̂′]) ≤ i(ω̂, ω̂′)+1 by [Kop23b,

Prop. 2.6], we obtain that π is (4|π0(∂Σ)| − 3)-Lipschitz. □

Witnesses for G(Σ) exist [BNV22, Lem. 2.7] and their enlargements are

likewise witnesses, hence there exist fully separating witnesses Σ ⊂ Ω of

arbitrarily large complexity. If | S(Ω)| > 2 and Γ is chosen as in Lemma 3.2,

then A(Σ,Γ) is δ-hyperbolic by Theorem 1.5 and by Lemma 3.2 and Theo-

rem 1.1 asdimG(Ω) > n for all n.

Suppose instead that | S(Ω)| = 2. If Ω has infinite genus or infinitely

many non-maximal ends, then there exists an infinite collection of pairwise-

disjoint annular witnesses separating the sets {e, f} = S(Ω). Choosing

finite subcollections defines quasi-flats of arbitrarily large dimension [Sch,

Exercise 3.13], hence again asdimG(Ω) = ∞. Alternatively, G(Ω) contains

an asymphoric hierarhically hyperbolic space of arbitrarily high rank, hence

has infinite asymptotic dimension [Kop23a, Prop. 1.11].

Finally, suppose that | S(Ω)| = 2 and Ω has finite genus and finitely

many non-maximal ends. Ω must have at least one infinite set e ∈ S(Ω); let
f ∈ S(Ω) be the other set. For any n, choose a (n+ 1)-holed sphere Σ ⊂ Ω

with n boundary components partitioning e and the remaining component

separating e from f and any genus or non-maximal ends. Then Σ is a fully

separating witness for G(Ω) and Γ, defined as in Lemma 3.2, is a n-pointed

star. A(Σ,Γ) is δ-hyperbolic by Theorem 1.5: we conclude by Lemma 3.2

and Theorem 1.1. //

4. Asymptotic dimension of arbitrary combinatorial models

We generalize the preceding arguments to a broad class of combinatorial

models for finite and infinite-type surfaces.

4.1. Admissible combinatorial models. Let Ω be a orientable surface of

finite or infinite type. We first provide an extension of arc and curve systems

and markings on Ω that subsumes both.

Definition 4.1. A cleanly marked arc and curve system ω on Ω is the union

of an arc system α and a marking µ on Ω such that:

(i) α,baseµ are disjoint, and

(ii) the maximal submarking µ′ with only non-empty transversals is com-

plete and clean in each component of Ω \ (ω \ µ′) that it intersects.
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A marking which satisfies the above is locally clean.

Let baseω = α ∪ baseµ denote the underlying arc and curve system. For

a component a ∈ baseω, let transω(a) := transµ(a) if a ∈ baseµ, else ∅ if

a ∈ α. We define the geometric intersection of ω = α ∪ µ and ω′ = α′ ∪ µ′
to be

i(ω, ω′) := i(baseω,baseω′) +
∑

a∈baseµ∪baseµ′

diamC(a)(πaω ∪ πaω′)

where πa(ω) := πaα ∪ πaµ and likewise for ω′. An essential, non-pants

subsurface intersects ω if and only if it intersects α or µ.

Notation. Let MS(Ω) denote the set of cleanly marked arc and curve

systems on Ω.

Definition 4.2. A multiarc and curve graph A on Ω is a simplicial graph

whose vertices are arc and curve systems on Ω. Likewise, a marking graph

M on Ω is a simplicial graph whose vertices are locally clean markings. Most

generally, a combinatorial model for Ω is a simplicial graph whose vertices

are cleanly marked arc and curve systems on Ω.

4.1.1. Witness projections. Let Σ ⊂ Ω be a compact, essential, non-pants,

non-annular subsurface. Let MS(Ω,Σ) ⊂ MS(Ω) denote the subset of

cleanly marked arc and curve systems intersecting Σ. We construct a pro-

jection ρΣ : MS(Ω,Σ) → MS(Σ) as follows (see e.g. [Sch, §5.2]). Let

ι : Σ ↪→ Ω be the inclusion map, let p : ΩΣ → Ω be the covering space asso-

ciated to π1(Σ) ∼= im ι∗ < π1(Ω) with Gromov closure ΩΣ. Let ι̃ : Σ ↪→ ΩΣ

be the (unique) lift of ι, and ῑ its inclusion into ΩΣ. Fix any homeomorphism

σ : ΩΣ → Σ that is a homotopy inverse for ῑ; note that σ is unique up to

homotopy, hence isotopy.

ΩΣ ΩΣ

Σ Ω

p

σ

ι

ι̃

Given ω ∈ MS(Ω,Σ), let ρΣ(ω) be the isotopy class defined by the closures

of non-peripheral components of σp−1(ω). In particular, ρΣ preserves (only)

essential curves in Σ: if a ∈ base ρΣ(ω) is a curve component then a ∈ ω and

a is essential in Σ; if transω(a) = πab then likewise b ⊂ Σ since ω is cleanly

marked and we again assign transversal πab.

One verifies that ρΣ(ω) is cleanly marked and independent of the choice

of representative for ω and σ. Likewise, ρΣ is independent of the choice of
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embedding of Σ: if ι′ : Σ ↪→ Ω is isotopic to ι, then the lift ῑ ′ is isotopic to

ῑ and thus a homotopy inverse for σ.

The natural action of PMod(Σ) onMS(Σ) defines an action of Mod(Σ, ∂Σ) ↠
PMod(Σ). Similarly, Mod(Σ, ∂Σ) ↷ MS(Ω,Σ) via the homomorphism

Mod(Σ, ∂Σ) → PMod(Ω) obtained by extending by identity.

Lemma 4.3. ρΣ : MS(Ω,Σ) → MS(Σ) is Mod(Σ, ∂Σ)-equivariant.

Proof. Let φ0 ∈ Mod(Σ, ∂Σ), fixing a representative. Let φ ∈ PMod(Ω) be

its extension by identity; since φ is (compactly) supported in Σ, it lifts to

a quasi-isometry on ΩΣ that extends to a homeomorphism φ on ΩΣ. Since

ιφ0 = φ ι and σ, ι are homotopy inverses, φ0σ and σφ are homotopic and

thus isotopic. For ω ∈ MS(Ω,Σ), σp−1(φω) = σφp−1(ω) is isotopic to

φ0σp−1(ω), whence the claim follows. □

Corollary 4.4. Let ϕ ∈ PMod(Σ). Then there exists ψ ∈ PMod(Ω) pre-

serving MS(Ω,Σ) such that for any ω ∈ MS(Ω,Σ), ϕρΣ(ω) = ρΣ(ψω). □

Given a combinatorial model M on Ω, let V (M), E(M) denote its vertex

and edge sets, respectively. If Σ is a witness for M then V (M) ⊂ MS(Ω,Σ)
and ρΣ defines a projection V (M) → MS(Σ).

Definition 4.5. A connected combinatorial model M on Ω is admissible if

(i) M admits a (compact) witness,

(ii) PMod(Ω) preserves V (M) and extends to an action on M, and

(iii) for any non-annular witness ∆ ⊂ Ω, there exists L∆ such that if

(a, b) ∈ E(M), then i(ρ∆(a), ρ∆(b)) ≤ L∆.

Remark 4.6. When Ω is finite-type, it deformation retracts to a compact

witness Ω. Since in addition i(ρ∆(a), ρ∆(b)) ≤ i(a, b) = i(ρΩ(a), ρΩ(b)), (i)

is tautological and in (iii) we may choose L∆ = LΩ to be uniform.

Admissible combinatorial models include many familiar graphs, including

the curve graph CΩ, the 1-skeleton MC(Ω)(1) of Masur–Minsky’s marking

complex, and the prescribed arc graphs and grand arc graph discussed above.

4.1.2. Combinatorial models on witnesses. Let Σ ⊂ Ω be a non-annular

witness for an admissible combinatorial model M on Ω. We construct an

admissible combinatorial model MΣ on Σ for which the projection ρΣ re-

stricts to a Lipschitz map M → MΣ, along with a Lipschitz coarse section

ι : MΣ → M. It follows that MΣ quasi-isometrically embeds into M.

Let V (MΣ) = ρΣ(V (M)) and let (a, b) ∈ E(MΣ) if and only if a ̸= b and

there exist ã ∈ ρ−1
Σ (a), b̃ ∈ ρ−1

Σ (b) such that (ã, b̃) ∈ E(M). It is immediate

that ρΣ : V (M) → V (MΣ) extends to a surjective 1-Lipschitz map ρΣ :

M → MΣ, hence in particular since M is connected so is MΣ. Likewise,
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since M satisfies Definition 4.5(iii), so does MΣ for uniform L = LΣ. By

Corollary 4.4 PMod(Σ) acts naturally on MΣ, hence MΣ is admissible.

Fix any Mod(Σ, ∂Σ)-equivariant section ι : V (MΣ) → V (M), and let

ã = ι(a) ∈ ρ−1
Σ (a). We show that ι is Lipschitz, hence extends to a Lipschitz

coarse section ι : MΣ → M for ρΣ. Since for any (a, b) ∈ E(MΣ), i(a, b) ≤
L, there are finitely many Mod(Σ, ∂Σ)-orbits of edges in MΣ. Let

M = max
(a,b)∈E(MΣ)/G

dM(ã, b̃)

where G = Mod(Σ, ∂Σ). Then ι is M -Lipschitz. We have shown:

Proposition 4.7. Let Σ ⊂ Ω be a non-annular witness for an admissible

combinatorial model M on Ω. There exists an admissible combinatorial

model MΣ on Σ which quasi-isometrically embeds into M. □

4.2. Asymptotic dimension lower bounds. We first consider the as-

ymptotic dimension of admissible combinatorial models on Σ, a finite-type

surface. Up to deformation retraction, we assume Σ is compact.

Remark 4.8. If Σ is a (closed) torus, then any admissible combinatorial

model is quasi-isometric to the curve graph, hence a quasi-tree with asdim =

1. Otherwise, if Σ admits a non-empty admissible combinatorial model (and

in particular, a witness subsurface), then χ(Σ) ≤ −1 and Σ ̸∼= Σ3
0.

4.2.1. Marking graphs and rank. It suffices to consider admissible marking

graphs, in the sense of the following lemma:

Lemma 4.9. Let M be an admissible combinatorial model on a compact

surface Σ ̸∼= Σ1. Then there exists an admissible marking graph M′ on

Σ with an identical witness set and a PMod(Σ)-equivariant quasi-isometry

M → M′ which coarsely preserves witness subsurface projection.

For a simple closed curve a ⊂ Σ, let da(ω, ω
′) := diamC(a)(πaω ∪ πaω

′).

Then da(ω, ω
′) is bounded in terms of i(ω, ω′) uniformly in a (see [Wat16,

Thm. 2.10], e.g.).

Proof. Let ω = ν∪α ∈ V (M). From [Kop23a, §3], we construct a canonical

set of locally clean markings µbaseω corresponding to the arc and curve

system baseω such that

(i) for µ ∈ µbaseω, base ν ⊂ µ with empty transversals, and

(ii) an essential, non-pants subsurface intersects µ ∈ µbaseω if and only if

it intersects baseω.

Moreover, there exists M such that for any ω, ω′ ∈ V (M)

(iii) i(ω, µ) < M for µ ∈ µbaseω,
1 and

1This fact is not stated in [Kop23a], but follows from the construction of µbaseω.



THE ASYMPTOTIC DIMENSION OF THE GRAND ARC GRAPH IS INFINITE 13

(iv) if (ω, ω′) ∈ E(M) then i(µ, µ′) < M for any µ ∈ µbaseω, µ
′ ∈ µbaseω′ .

Obtain the set µω by adding the transversals in ν to each µ ∈ µbaseω. Note

that µ remains locally clean: else, there is a component in ν bounding an

essential, non-pants subsurface disjoint from µ but not from baseω, contra-

dicting property (ii). Likewise (iii) still holds for µω.

Let V (M′) =
⋃

ω∈M µω and let (µ, µ′) ∈ E(M′) if and only if µ ∈ µω, µ
′ ∈

µω′ for some (ω, ω′) ∈ E(M). We prove thatM′ is admissible and ω 7→ µω is

the desired (coarse) quasi-isometry. By applying the arguments in [Kop23a]

it suffices to verify (ii) and (iv) for the sets µω, replacing baseω with ω and

baseω′ with ω′, as well as the property

(v) if µω ∩ µω′ ̸= ∅, then i(ω, ω′) is uniformly bounded.

(ii) for µbaseω implies the same for µω, except for annuli parallel to curves

in base ν; since ν ⊂ µ ∩ ω for µ ∈ µω, (ii) holds for µω. Let ω = ν ∪ α

and ω′ = ν ′ ∪ α′. Suppose (ω, ω′) ∈ E(M) and µ ∈ µω, µ
′ ∈ µω′ . Since

(iv) holds for µbaseω, µbaseω′ , it suffices that da(µ, µ
′) is uniformly bounded

for a ∈ ν ∪ ν ′; by (ii), if µ projects to C(a) then so does ω, and likewise

for µ′ and ω′. i(µ, ω), i(µ′, ω′) < M , hence each pair has uniformly close

projections if non-empty: da(µ, µ
′) is bounded in terms of da(ω, ω

′) < LΣ.

Finally, if µ ∈ µω ∩µω′ , then [Kop23a, §3.2] implies that i(baseω,baseω′)

is uniformly bounded. For any a ∈ ν ∪ ν ′, we show that da(ω, ω
′) is also

uniformly bounded. By construction, if ω or ω′ has non-empty projection to

C(a) then so does µ. Since i(ω, µ), i(ω′, µ) < M , we conclude as above. □

In particular, by [Kop23a] any admissible marking graph (hence likewise

any admissible combinatorial model) M on a compact surface Σ is an asym-

phoric hierarchically hyperbolic space with respect to subsurface projections

to witness curve graphs. Let X denote the collection of witness subsurfaces

for M. Then in particular the rank ν of (M,X ) corresponds to the largest

cardinality of a set of pairwise disjoint, connected surfaces in X . Since

(M,X ) is asymphoric, asdimM ≥ ν [BHS21, Thm. 1.15] and M is δ-

hyperbolic if and only if ν = 1 [BHS21, Cor. 2.15]. The lower bound here

will prove sufficient except when ν = 1; we note that an identical bound can

be achieved by explicitly constructing quasi-flats.

4.2.2. The δ-hyperbolic case. Adapting the arguments in Section 2, we prove

the following:

Theorem 4.10. Let Σ be a genus g compact surface, possibly with boundary.

If M is a (non-empty) δ-hyperbolic admissible combinatorial model on Σ,

then asdimM ≥ g − ⌈12χ(Σ)⌉.

If Σ ∼= Σ1, then the claim is immediate by Remark 4.8. Otherwise, we may

assume M is an admissible marking graph by Lemma 4.9. Let X M denote
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the collection of witness subsurfaces for M. For any M′ an admissible

marking graph on Σ with X M ⊃ X M′
, there exists a functorial canonical

coarse surjection ι : M → M′ such that πW ◦ ι is uniformly coarsely πW for

any W ∈ X M′
[Kop23a, §2.1]. In particular, X MC(1)(Σ) is every essential,

non-peripheral subsurface in Σ and X CΣ = {Σ}, hence we have canonical

maps MC(1)(Σ) → M → CΣ.

Lemma 4.11. Let M,M′ be admissible marking graphs on Σ, a compact

surface, such that X M ⊃ X M′
, and let ι : M → M′ be the canonical coarse

surjection. If M is δ-hyperbolic, then ι is coarsely alignment-preserving.

We note that if M is δ-hyperbolic, then ν(M′) ≤ ν(M) ≤ 1, hence M′

is δ-hyperbolic. Recall that a path ρ ⊂ X is a D-hierarchy path for a

hierarchically hyperbolic space (X,G ) if it is a (D,D)-quasi-geodesic and

παρ is a unparameterized (D,D)-quasi-geodesic for all α ∈ G .

Proof. Since (M,X M) is hierarchically hyperbolic, there exists D > 0 such

that for any x, y ∈ M, there exists a D-hierarchy path joining x, y [BHS19,

Thm. 4.4]. Let (x, z, y) ∈ M3 be aligned and let γ be the geodesic from

x to y passing through z and ρ the hierarchy path between x, y. By the

Morse lemma, there exists a constant M(D, δ) such that γ, ρ are M(D, δ)-

Hausdorff close, hence d(z, ρ) ≤ M(D, δ). For any W ∈ X M, πWρ is an

unparameterized (D,D)-quasi-geodesic. Applying the Morse lemma and

that πW is L-Lipschitz for uniform L, it follows that (πW (x), πW (z), πW (y))

areK-aligned whereK = 2(M(D, δ0)+LM(D, δ)) is uniform overM3,X M

and δ0 is a uniform hyperbolicity constant for curve graphs [HPW15].

It follows that πW for W ∈ X M and likewise πW ′ for W ′ ∈ X M′
are

K ′-alignment preserving for uniform K ′. Since X M′ ⊂ X M, the distance

formulas for M,M′ imply the claim. □

Suppose that M is a δ-hyperbolic admissible marking graph on a compact

surface Σ with genus g. By Lemma 4.11, the canonical map ι : M → CΣ
is coarsely alignment preserving, hence by Theorem 1.12 ∂CΣ embeds into

∂M. To prove Theorem 4.10 it suffices to find a compact subspace Z ⊂
∂CΣ such that dimZ ≥ n := g − 1 − ⌈12χ(Σ)⌉, since by Proposition 2.5

dimZ + 1 ≤ asdimM. Recall that ∂CΣ ∼= EL(Σ).

Proposition 4.12. Let Σ be a genus g compact hyperbolic surface and S

the (n+4)-times punctured sphere, where n = g−1−⌈12χ(Σ)⌉. Then EL(S)
embeds into ∂CΣ ∼= EL(Σ).

Proof. For simplicity, we replace the boundary components of Σ with punc-

tures, noting that CΣ ∼= C(Σ \ ∂Σ). Choose a hyperelliptic involution η

on Σ that fixes at most one puncture and let h : Σ → S′ be the orbifold
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covering map obtained by quotienting by η. Obtain S by removing the cone

points of S′: one verifies that S has n+ 4 punctures. By [RS09], h induces

a quasi-isometric embedding h∗ : CS → CΣ, which has quasi-convex image

by the Morse lemma. Hence EL(S) ∼= ∂CS ⊂ ∂CΣ. □

When Σ is a sphere with four boundary components, Theorem 4.10 is

vacuously true. Otherwise, from Theorem 2.4 and the universal embedding

property of Nöbeling spaces, we obtain the desired subspace Z ⊂ EL(S) ⊂
∂CΣ and Theorem 4.10 follows. //

4.2.3. Lower bounds for infinite-type surfaces. Given an admissible combi-

natorial model M on an infinite-type surface Ω, let wM ∈ N ∪ {∞} denote

the least upper bound on cardinalities for a set of pairwise-disjoint connected

witnesses for M. We consider two cases:

(i) wM is infinite. For arbitrarily largem ∈ N, we may choose a compact,

essential subsurface Σ ⊂ Ω containing at least m disjoint witnesses. Σ

is a witness for M, and any witness for M contained in Σ is a witness

for MΣ by construction. It follows that MΣ is an asymphoric hier-

archically hyperbolic space of rank ν ≥ m, hence by Proposition 4.7

asdimM ≥ asdimMΣ ≥ m. asdimM = ∞.

(ii) wM = m is finite. Fix a collection of pairwise disjoint witnesses

{Wi} with cardinality m. Fix W0 among these such that W0 lies

in a complementary component Ω0 of
⋃

i>0Wi of infinite type. Let

Σ ⊂ Ω0 be an enlargement of W0 of arbitrarily negative χ(Σ): Σ is a

witness for M. Moreover, since any witness for MΣ is a witness for

M disjoint from the Wi>0, any two connected witnesses for MΣ must

intersect: MΣ is an asymphoric hierarchically hyperbolic space of

rank ν = 1, hence δ-hyperbolic. By Proposition 4.7 and Theorem 4.10,

asdimM ≥ asdimMΣ ≥ −1
2χ(Σ), hence asdimM = ∞.

Theorem 4.13. Let M be an admissible combinatorial model on an infinite-

type surface Ω. Then asdimM = ∞. □

Theorem 1.3 follows from Theorems 4.10 and 4.13 in the special case of

admissible multiarc and curve graphs. //
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