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Abstract. Given a compact surface Σ with boundary and a relation Γ on

π0(∂Σ), we define the prescribed arc graph A(Σ,Γ) to be the full subgraph

of the arc graph A(Σ) containing only classes of arcs between boundary com-

ponents in Γ. We prove that A(Σ,Γ) is connected and infinite-diameter (if

Σ is not the sphere with three boundary components), and classify when it

is δ-hyperbolic: in particular, A(Σ,Γ) is δ-hyperbolic if and only if Γ is not

bipartite except in some sporadic cases, where δ may be chosen uniformly.

1. Introduction, definitions and main results

Given a compact surface Σ with boundary, we recall the arc graph A(Σ), whose

vertices are isotopy classes of essential simple arcs and whose edges are determined

by disjointness up to isotopy. We propose the prescribed arc graph as variant of the

arc graph, defined to be the full subgraph A(Σ,Γ) ⊂ A(Σ) spanned by the isotopy

classes of arcs between boundary components in Γ, a symmetric relation on π0(∂Σ):

Definition 1.1. Let Σ be a compact, orientable surface with boundary. Given

Γ a graph with V (Γ) = π0(∂Σ), let an essential simple arc α be Γ-allowed if α

terminates on (not necessarily distinct) boundary components a−, a+ such that

(a−, a+) ∈ E(Γ). Define the Γ-prescribed arc graph A(Σ,Γ) as follows:

V (A(Σ,Γ)) = {a an unoriented isotopy class of Γ-allowed arcs}
E(A(Σ,Γ)) = {(a, a′) : a, a′ have disjoint representatives}

We will call Γ the prescribing graph for A(Σ,Γ). We note that if Γ is the complete

graph with loops on π0(∂Σ), then A(Σ,Γ) is the usual arc graph.

Henceforth let Σb
g denote the compact, orientable surface with genus g and b

boundary components. We prove some initial results concerning the geometry of

A(Σ,Γ), including the following:

Theorem 1.2. Assume that χ(Σ) ≤ −1, E(Γ) ̸= ∅, and Σ ̸= Σ3
0. Then A(Σ,Γ) is

connected and has infinite diameter.

Theorem 1.3. Assume that χ(Σ) ≤ −1, E(Γ) ̸= ∅, and Σ ̸= Σ3
0. If χ(Σ) ≥ −2

or if Σ = Σn+1
0 and Γ is a n-pointed star then A(Σ,Γ) is δ-hyperbolic. Otherwise,

A(Σ,Γ) is (uniformly) δ-hyperbolic if and only if Γ is not bipartite.
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Section 2 proves Theorem 1.2 outside of some sporadic low-complexity cases,

as well as establishing an upper bound on distances d(a, b) in A(Σ,Γ) in terms of

intersection number i(a, b). Section 3 shows that A(Σ,Γ) is uniformly δ-hyperbolic

if Γ is not bipartite, again excluding some sporadic cases.

To complete the proof of Theorem 1.3, we appeal to the existence of disjoint

witness subsurfaces. Following standard convention (see [MS13, Def. 5.1]), we define

witnesses to be subsurfaces that are cut by every Γ-allowed arc:

Definition 1.4. An essential connected proper subsurface W ⊂ Σ is a (Γ-)witness

for A(Σ,Γ) if every Γ-allowed arc intersects W .

Remark 1.5. We also assume every witness W is compact and non-simple: that is,

W ̸∼= Σ3
0.

Section 4 proves (again, ignoring some sporadic cases) that Γ is bipartite if and

only if there exist a pair of disjoint Γ-witnesses; the latter implies a quasi-isometric

embedding of Z2. Finally, Section 5 addresses the sporadic cases missing from the

preceding sections.

In the spirit of [MS13], we may expect that A(Σ,Γ) is δ-hyperbolic if and only if

there does not exist any pair of disjoint Γ-witnesses. This hypothesis in fact holds

true, although we do not prove it directly. From the results in Sections 3 and 4

along with the sporadic cases in Section 5, we conclude:

Theorem 1.6. Assume that χ(Σ) ≤ −1, E(Γ) ̸= ∅, and Σ ̸= Σ3
0. Then A(Σ,Γ)

is (uniformly) δ-hyperbolic if and only if Σ does not admit two distinct, disjoint

Γ-witnesses.

We remark that it is possible to show Theorem 1.6 without using Section 3,

at the cost of the uniformity of δ: the forward direction is proven in Section 4,

and the reverse direction may be shown by proving that (excluding a sporadic

case) whenever Σ does not admit distinct, disjoint Γ-witnesses, A(Σ,Γ) is quasi-

isometric to a twist-free multicurve graph, in the sense of [Vok22]. Hence A(Σ,Γ) is

a hierarchically hyperbolic space with respect to projection to witness subsurfaces;

since it has no orthogonal coordinates, it is δ-hyperbolic [BHS21], where δ depends

on the complexity of Σ.

We also note that in the case where Γ is loop-free, i.e. every Γ-allowed arc

terminates on two distinct boundary components, the proofs of the above (and in

particular, those in Section 2) simplify considerably.

1.1. Motivation. Although perhaps overshadowed in recent decades by the curve

complex C(Σ), the arc graph A(Σ) has been an object of intrinsic interest in the

classical study of surfaces of finite topological type (i.e. compact, with finitely many

marked points) and their mapping class groups. For example, the arc complex of a

finite type surface Σ triangulates its Teichmüller space T (Σ) [Har86], with natural

coordinates arising from horodisks in (cusped) hyperbolic metrics [BE88]; earlier

work [Mos83] uses A(Σ) to study conjugacy classes of the mapping class group

Mod(Σ). More recently, given Q ⊂ π0(∂Σ), [MS13] investigates A(Σ, Q), the full
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subgraph ofA(Σ) spanned by arcs terminating onQ, and [DFV18] studiesA2(Σ, Q),

likewise defined but excluding loops. Both are prescribed arc graphs A(Σ,Γ), where

Γ is the complete graph on Q with or without loops respectively.

Nonetheless, the current work arises instead from combinatorial objects defined

for surfaces of infinite topological type (i.e. with infinite genus or infinitely many

boundary components or marked points, and whose fundamental group is not

finitely generated). For such surfaces, we have that diam(C(Σ)) = 2, and likewise

diam(A(Σ)) = 2 whenever the number of marked points or boundary components

is infinite. A number of authors have proposed suitable (e.g. infinite diameter,

connected, and δ-hyperbolic) combinatorial models in the infinite type setting on

which Mod(Σ) acts continuously, in analogue to C(Σ) and A(Σ) in the finite type

setting. Danny Calegari’s original 2009 blog post on mapping class groups of infi-

nite type surfaces [Cal09] defines the ray graph on R2\Cantor set, which was shown

to be infinite diameter, connected, and δ-hyperbolic by Juliette Bavard in [Bav16].

More recently, we note the omnipresent arc graph defined by Fanoni, Ghaswala,

and McLeay [FGM21] and the grand arc graph defined by Bar-Natan and Verberne

[BNV22]. We pay special attention to the grand arc graph G(Σ), in which one

considers only arcs between distinct sets in a certain Mod(Σ)-invariant partition of

maximal ends, the sense of the partial order on Ends(Σ) defined in [MR20].

One observes that, in the definitions above, the combinatorial model is made

“sparse enough” by restricting which arcs in Σ are considered. We propose the

prescribed arc graph as a similar modification for the usual arc graph A(Σ) in the

finite type setting, both inspired and motivated by the combinatorial models for

infinite type surfaces discussed above. For example, let Σ be a surface of infinite

type. Then for suitable compact exhaustion by finite type subsurfaces Σi ⊂ Σ and

prescribing graphs Γi on π0(∂Σi), A(Σi,Γi) is meant to “approximate” G(Σ). To

start, one may prove that for appropriate (Σi,Γi), A(Σi,Γi) coarsely embeds into

G(Σ), hence e.g. asdimG(Σ) ≥ asdimA(Σi,Γi), through which we aim to show

that the asymptotic dimension of G(Σ) is infinite. More generally, direct limits

of suitable prescribed arc graphs A(Σi,Γi) on compact subsurfaces Σi may offer

a diverse collection of combinatorial models for infinite type surfaces; since the

δ in Theorem 1.6 is uniform, such objects are δ-hyperbolic if each A(Σi,Γi) is

δ-hyperbolic. We will discuss these arguments in a future work.

Finally, we recall the results of Aramayona and Valdez [AV18], which classify

the connectedness, diameter, and δ-hyperbolicity for a broad class of “sufficiently

invariant” subgraphs of the arc and curve graph AC(Σ), for Σ a surface of infinite

type. Here, arcs are assumed to terminate on a set of marked points Π, and a

subgraph G ⊂ AC(Σ) is called sufficiently invariant if there exists a subset P ⊂ Π

such that G is preserved setwise by the subgroup of the relative mapping class group

Mod(Σ,Π) that preserves P setwise. An extension of our results to arc graphs on

infinite type surfaces Σ (e.g. those arising from direct limits of prescribed arc graphs

A(Σi,Γi) on compact surfaces Σi) would likewise extend the work of [AV18], in the

sense that the resulting arc subgraphs would be invariant only up to subgroups of

Mod(Σ,Π) that fix a particular symmetric relation Γ on Π.
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1.2. Trivial cases and marked points. If Σ is the closed annulus or disk, A(Σ,Γ)

is either empty or a singleton. We will ignore these trivial cases and assume Σ is

neither. If E(Γ) = ∅ or Σ = Σ3
0, then A(Σ,Γ) is likewise empty or finite; we

typically exclude these cases as well.

We note that the omission of marked points or punctures from the definition

of the prescribed arc graph is one of convenience, and likewise the choice that

arcs terminate on boundary components instead of marked points. In particular,

without loss of generality we will assume every surface considered is without marked

points: if Σ is a marked surface and Σ′ is obtained by deleting a neighborhood of

each marked point, then A(Σ) ∼= A(Σ′) and the prescribed arc graph may be taken

to be the corresponding full subgraph of A(Σ′). Moreover, Definition 1.1 could

just as well have been taken with respect to arcs between marked points, with

V (Γ) corresponding to marked points instead of boundary components. We will

occasionally appeal to this viewpoint when it is more appropriate.

We also define some convenient notation:

Notation. Let α be an oriented essential arc between boundary components of a

surface Σ. We denote by α−, α+ the boundary component containing the initial,

resp. terminal endpoint of α. If a is an isotopy class of such arcs, then a± := α±
for a choice of representative arc α. Let ∂α := {α±} and ∂a := {a±}.

Remark 1.7. For simplicity, we typically conflate arcs and their isotopy classes in

proofs where well defined. For example, while a ∈ V (A(Σ,Γ)) denotes an isotopy

class of Γ-allowed arcs, we may apply topological operations such as intersection

or concatenation, or ascribe properties like transversality and minimal position, by

(implicitly) choosing a representative α ∈ a. Conversely, given a Γ-allowed arc δ,

we may view δ ∈ V (A(Σ,Γ)) by (implicitly) passing to the isotopy class [δ].

We conclude this section with an important final definition and some initial

discussion useful for the remaining work.

1.3. A canonical inclusion. Consider any subgraph Γ′ ⊂ Γ; without loss of gen-

erality, assume V (Γ′) = V (Γ) = π0(∂Σ), else append singletons for the remaining

vertices. If a is an isotopy class of Γ′-allowed arcs, then likewise it is Γ-allowed.

Let π : A(Σ,Γ′) → A(Σ,Γ) be the simplicial map obtained by the inclusion of

V (A(Σ,Γ′)) into V (A(Σ,Γ)); since π is simplicial, it is 1-Lipschitz. Moreover, if

Γ is loop-free, then every Γ-allowed arc a ∈ V (A(Σ,Γ)) is non-separating, and in

particular, if (u, v) ∈ E(Γ′) then there exists a Γ′-allowed arc between u, v disjoint

from a:

Lemma 1.8. Suppose that Γ is loop-free and Γ′ ⊂ Γ contains an edge. Then

π : A(Σ,Γ′) → A(Σ,Γ) is 1-coarsely surjective. □

Finally, we prove a technical lemma of importance in Sections 2 and 3:

Lemma 1.9. Suppose that ℓ0 ⊂ Γ is a loop edge and w ⊂ ∂Σ is the boundary

component in ℓ0. Then the vertex set X2 := {a ∈ V (A(Σ,Γ) : d(a, πA(Σ, ℓ0)) > 1}
is independent (contains no adjacent vertices) in A(Σ,Γ) and contains only arcs

with an annular complementary component containing w.
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Proof. It suffices to show that if a ∈ X2, then a has an annular complementary

component containing w: we note that any two such non-isotopic arcs must inter-

sect. Let Σ± denote the abstract closure of the complementary component(s) of

a. Since a is an arc, the gluing map Σ± → Σ is π1-injective, hence any essential

arc δ ⊂ Σ± terminating on w ∩ ∂Σ± descends to an essential ℓ0-allowed arc in Σ

disjoint from a, and d(a, πA(Σ, ℓ0)) = 1: no such δ exists. Hence if a terminates on

w then Σ± is a collection of disks, a contradiction since Σ is not a disk or annulus;

if a does not terminate on w then one component is an annulus containing w. □

Definition 1.10. We will call the vertex set X2 exceptional.

2. Connectedness of A(Σ,Γ)

We recall the definition of a unicorn arc introduced in [HPW15]:

Definition 2.1. Let a, b be distinct isotopy classes of essential, simple arcs. Then a

unicorn of a, b is (the isotopy class of) a concatenation α0∗β0 of subarcs α0 ⊂ α ∈ a

and β0 ⊂ β ∈ b.

For c ∈ ∂a and d ∈ ∂b, let U (ac, bd) ⊂ A(Σ) denote the full subgraph spanned

by a, b and unicorns with an initial subarc along a from c and a terminal subarc

along b to d. By [HPW15], U (ac, bd) is connected.

Definition 2.2. Given distinct Γ-allowed arcs a, b, a Γ-unicorn of a, b is a unicorn

that is Γ-allowed. The Γ-unicorn subgraph U (a, b) ⊂ A(Σ,Γ) is the full subgraph

spanned by Γ-unicorns of a, b.

In addition, we impose that a, b ∈ U (a, b); we will say that a unicorn is proper

if x ̸= a, b. Unlike in the usual arc graph, U (a, b) is not always connected. For

example, since any proper unicorn between a, b has one endpoint in ∂a and the

other in ∂b, if ∂a shares no edges with ∂b in Γ then no such arc is Γ-allowed:

U (a, b) consists of two singletons. In fact this is the only case for which U (a, b) is

disconnected:

Proposition 2.3. Let a, b ∈ V (A(Σ,Γ)). If ∂a and ∂b share an edge in Γ, then

U (a, b) is connected. Moreover, d(a, b) ≤ i(a, b) + 1, where i denotes the geometric

intersection number.

Proof. Let x ∈ U (a, b), hence x is Γ-allowed and (x−, x+) ∈ E(Γ). Then x ∈ Ux =

U (ax− , bx+) ⊂ U (a, b), since every unicorn y ∈ U (ax− , bx+) has ∂y = ∂x ∈ E(Γ)

hence is Γ-allowed, and all considered graphs are full in A(Σ). Since every Ux is

connected and contains a, U (a, b) is connected. Finally, |U (a, b)| ≤ i(a, b) + 2 by

construction, hence diam(U (a, b)) ≤ i(a, b) + 1. □

Remark. In particular, we note that if a+ = b+, then U (aa− , bb+) ⊂ U (a, b): that

is, any simple arc obtained from a, b by oriented surgery is a Γ-unicorn.

Despite that some unicorn subgraphs are disconnected, we may now show that

A(Σ,Γ) is connected if Γ is loop-free. In particular, it suffices that A(Σ, e) is

connected for some edge e ∈ Γ: πA(Σ, e) ⊂ A(Σ,Γ) is thus a connected, 1-dense
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subgraph by Lemma 1.8. Observing that for any edge e and a, b ∈ V (A(Σ, e))

∂a = ∂b, A(Σ, e) is connected by Proposition 2.3.

If Γ contains a loop edge ℓ0, a similar argument almost applies: by Proposi-

tion 2.3 A(Σ, ℓ0) is connected, and by Lemma 1.9 V (A(Σ,Γ)) \X2 lies within the

connected 1-neighborhood of πA(Σ, ℓ0). However, to show that the exceptional

vertices X2 are not isolated we must defer to Section 2.1, where we prove the dis-

tance bound in Proposition 2.3 in general. This result will be useful in addition for

our discussion in Section 3.

2.1. An upper bound for distance. We will prove that except in certain low-

complexity cases, d(a, b) ≤ i(a, b) + 1, extending the result of Proposition 2.3 for

generic arcs. We begin with arcs with one or two intersections.

Lemma 2.4. Assume that Σ ̸= Σ3
0 and if Σ = Σ2

1 then Γ is not two disjoint loop

edges. If a, b are unoriented isotopy classes of Γ-allowed arcs and i(a, b) = 1, then

d(a, b) = 2 in A(Σ,Γ).

Proof. Assume a, b are in minimal position. If ∂a ∩ ∂b ̸= ∅ then ∂a, ∂b share

an edge in Γ, and likewise by assumption if Σ = Σ2
1, since then either Γ is a

single loop edge or contains a non-loop edge. Hence applying Proposition 2.3,

d(a, b) ≤ i(a, b) + 1 = 2. We suppose ∂a ∩ ∂b = ∅ and Σ ̸= Σ2
1 and consider three

cases:

(i) Neither a nor b are loops (i.e. a+ ̸= a−, b+ ̸= b−). Let N be a regular

neighborhood of a ∪ b ∪ b±, and let δ be a component of ∂N .1 Then δ is

essential and disjoint from a, b; since δ± = a±, δ is Γ-allowed.

(ii) (Without loss of generality) a is a loop but b is not (a+ = a−, b+ ̸= b−). We

proceed as above, and let δ1, δ2 denote the components ∂N . If both bound

half-disks then Σ = Σ3
0, a contradiction. Otherwise, at least one is essential

and we conclude as above.

(iii) Both a and b are loops (a+ = a−, b+ = b−). Let N be a regular neighborhood

of a∪b∪b+. Since a, b intersect once, N ∪N(a+) is a thrice-punctured torus;

let δ = ∂N . If δ is essential, then we conclude as above; else δ bounds a

half-disk and Σ = Σ2
1.

It follows that d(a, b) = 2. □

Lemma 2.5. Assume that Σ ̸= Σ3
0 and if Σ = Σ2

1 then Γ is not two disjoint loop

edges. If a, b are unoriented isotopy classes of Γ-allowed arcs such that i(a, b) = 2,

then d(a, b) ≤ 3 in A(Σ,Γ).

Proof. Assume a, b are in minimal position and that ∂a∩ ∂b = ∅, else conclude by

Proposition 2.3 as above. Let {s, t} = a∩ b and let α0, β0 denote the subarcs of a, b

respectively between s and t; orient a such that s is nearer a−, and likewise with

b. Let α± ⊂ a \ α̊0 denote the subarc incident on a±, and likewise for β± ⊂ b \ β̊0.
We consider two cases:

1Remark: ∂N denotes the topological boundary, hence does not contain b± or any subarcs of

a±.
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(i) Not both a, b are loops, or ı̂(a, b) = ±2, where ı̂ denotes the algebraic inter-

section number. Without loss of generality, assume that if only one of a, b is a

loop, then it is a. Let δ be the concatenation of β−, α0, and β
+. We observe

that δ and b are disjoint up to isotopy and i(δ, a) ≤ 1, with equality when

ı̂(a, b) = ±2. Hence if δ is essential the claim is shown: since ∂δ = ∂b, δ is

Γ-allowed and d(δ, a) ≤ 2 by Lemma 2.4, hence d(a, b) ≤ d(a, δ)+d(δ, b) ≤ 3.

Finally, to verify that δ is essential, we observe that either b (hence δ) is not

a loop or both a, b are loops and ı̂(a, b) = ±2, hence i(δ, a) = 1. In both

cases, it follows that δ is non-separating.

(ii) Both a, b are loops and ı̂(a, b) = 0. Let Na be a regular neighborhood of

a∪ b∪ b± and Nb a regular neighborhood of a∪ b∪ a±. Let Da be the set of

arc components of ∂Na, and likewise Db for ∂Nb. For any ρ ∈ D := Da ∪Db,

ρ is disjoint from a, b and either ∂ρ ∈ ∂a or ∂ρ ∈ ∂b. Hence if ρ is essential,

then ρ is Γ-allowed and d(a, b) = 2.

Assume every arc in D bounds a half-disk. Then (e.g. by an Euler charac-

teristic argument) the simple closed curve α0∪β0 separates Σ = Σ3
0∪α0∪β0

Σ′,

where Σ′ is the subsurface with boundary α0 ∪ β0 not containing a± and b±.

If Σ′ is a disk, then a, b are not in minimal position, and if Σ′ is an annulus,

then Σ = Σ3
0, both contradictions with our assumptions. Hence there exists

a simple arc γ ⊂ Σ′ between s, t ∈ ∂Σ′ that does not bound a half-disk in Σ′.

Let α′ = α− ∗γ ∗α+ and β′ = β− ∗γ ∗β+. If α′ bounds a half-disk in Σ, then

likewise does γ in Σ′, and similarly with β′: both α′ and β′ are essential.

Since ∂α′ = ∂a and ∂β′ = ∂b, α′, β′ are Γ-allowed, and we observe that a

and α′, α′ and β′, and β′ and b are disjoint up to isotopy. d(a, b) ≤ 3. □

Σ′ b±a±

s

t

Figure 1. A maximal collection of disjoint arcs (orange, thin) in

D , each bounding a half disk.

For i(a, b) > 2, we construct a sequence of arcs with strictly decreasing intersec-

tion number and proceed by induction.

Proposition 2.6. Assume that Σ ̸= Σ3
0 and if Σ = Σ2

1 then Γ is not two disjoint

loop edges. If a, b are unoriented isotopy classes of Γ-allowed arcs and i(a, b) = n,

then d(a, b) ≤ n+ 1 in A(Σ,Γ).

Proof. As above, we may assume that ∂a∩∂b = ∅, else conclude by Proposition 2.3.

Assume a, b are in minimal position. It suffices to find a Γ-allowed arc δ disjoint
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from b such that i(δ, a) < i(a, b), or likewise exchanging a and b; we then conclude

by induction on intersection number, noting that the cases i(a, b) ≤ 2 follow from

Lemmas 2.4 and 2.5. Assume i(a, b) ≥ 3 and let s ∈ a ∩ b be the first intersection

along b; let t be the subsequent intersection along a. Let α0, β0 denote the subarcs

of a, b respectively between s and t. Let β± ⊂ b \ β̊0 denote the subarc incident on

b±. We consider two cases:

(i) s, t are intersections of the same sign. Let δ = β− ∗α0 ∗ β+. Up to isotopy δ

and b are disjoint and i(δ, a) ≤ i(a, b)−1. Since δ± = b±, if δ is essential then

it is Γ-allowed. If b is not a loop, then δ is not a loop and hence essential.

Suppose that b is a loop. Isotoping δ to be disjoint from b, we observe that

the endpoints of δ separate the endpoints of b on b±: δ is non-separating and

hence essential.

(ii) s, t are intersections of opposite sign. Let δ as above; δ and b are disjoint up

to isotopy and i(δ, a) ≤ i(a, b) − 2, hence if δ is essential, then we conclude.

Suppose instead that δ bounds a half-disk D, hence δ and b are loops. Then

since β− ∩ a = {s}, we have β+ ∩ a = {t}, else a, b share a bigon and are not

in minimal position. Let N be a regular neighborhood of a∪D ∪ b±, and let

ξ be the arc component of ∂N not parallel to a. We observe that ξ is disjoint

from a and that i(ξ, b) ≤ i(a, b)− 2; ∂ξ = ∂a, hence if ξ is essential, then ξ is

Γ-allowed. Suppose that ξ bounds a half-disk, and observe that b intersects

ξ only on subarcs parallel to a. Hence b and ξ are disjoint, else b shares a

bigon or half bigon with ξ incident only on subarcs in ξ ∩a, thus also with a.

Since a \ α̊0 is parallel to ξ, a intersects b only at s, t, a contradiction since

i(a, b) ≥ 3. □

a

β+

β− δ

b±

(a) (b)

D

a
b

ξ

Figure 2. (a) δ separates the endpoints of b in case (i). (b) the

arc ξ in case (ii) when δ bounds a half disk.

Remark. Note that if Γ is loop-free, then in the statement of the proposition and

the two preceding lemmas we may omit our assumptions on (Σ,Γ).

Connectivity of A(Σ,Γ) follows as an immediate corollary:

Theorem 2.7. Assume that either Γ is loop-free, or Σ ̸= Σ3
0 and if Σ = Σ2

1 then

Γ is not two disjoint loop edges. A(Σ,Γ) is connected. □
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Remark. The connectedness of A(Σ,Γ) allows us to elaborate Lemma 1.9. Suppose

ℓ0 ⊂ Γ is a loop edge and X2 ⊂ V (A(Σ,Γ)) denotes the set of exceptional vertices

not in the 1-neighborhood of πA(Σ, ℓ0), and additionally assume Σ ̸= Σ3
0 and if

Σ = Σ2
1 then Γ is not two disjoint loop edges. We observe that for any v ∈ X2,

d(v, πA(Σ, ℓ0)) = 2. In particular, since X2 has no adjacent vertices in A(Σ,Γ) by

Lemma 1.9 and A(Σ,Γ) is connected, v must be adjacent to a /∈ X2, which lies in

the 1-neighborhood of πA(Σ, ℓ0) by the definition of X2. //

Proposition 2.6 also allows us to generalize Lemma 1.8:

Lemma 2.8. Suppose that Γ′ ⊂ Γ contains an edge, and let π : A(Σ,Γ′) → A(Σ,Γ)

denote the simplicial map induced by the inclusion Γ′ ↪→ Γ. Then:

(i) if Γ is loop-free, then π is 1-coarsely surjective.

Moreover, if Σ ̸= Σ3
0 and Σ = Σ2

1 only if Γ is not two disjoint loop edges, then:

(ii) if Γ′ has a non-loop edge, then π is 2-coarsely surjective; and otherwise

(iii) π is 3-coarsely surjective.

Proof. (i) is Lemma 1.8. By change of coordinates, for any a ∈ V (A(Σ,Γ)) \
V (πA(Σ,Γ′)), there exists a Γ′-allowed arc ρ that intersects a at most once if ρ is

not a loop, and at most twice if ρ is a loop. We conclude by Proposition 2.6. □

We note that Γ includes into the complete graph with loops on π0(∂Σ), hence

the induced map π : A(Σ,Γ) → A(Σ) is a coarse surjection by Lemma 2.8. We

obtain:

Theorem 2.9. Assume Σ ̸= Σ3
0. If A(Σ) has infinite diameter, then likewise does

A(Σ,Γ). □

Remark 2.10. While Lemma 2.8 implies that A(Σ,Γ) lies canonically as a coarsely

dense subset ofA(Σ), it is usually significantly distorted: we show that π is typically

not a quasi-isometric embedding in Section 4.1.

3. (Σ,Γ) for which A(Σ,Γ) is hyperbolic

In the following, we assume that Σ ̸= Σ3
0 and that if Σ = Σ2

1, then Γ contains

a non-loop edge. To show the hyperbolicity of A(Σ,Γ), we apply the following

proposition of [Bow14]:

Theorem 3.1 (Guessing geodesics lemma). Suppose that Ω is a connected simpli-

cial graph and there exists {Ua,b}a,b∈V (Ω) a family of connected subgraphs such that

a, b ∈ Ua,b and ∆ ≥ 0 such that

(I) for a, b ∈ V (Ω), if d(a, b) ≤ 1, then diamUa,b ≤ ∆, and

(II) for a, b, c ∈ V (Ω), Ua,c ⊂ N∆(Ua,b ∪ Ub,c).

Then Ω is δ-hyperbolic for some δ = δ(∆) ≥ 0.

By Proposition 2.3, for a, b ∈ V (A(Σ,Γ)), the Γ-unicorn subgraph U (a, b) is con-

nected only when ∂a and ∂b share and edge in Γ. Our subgraphs will be chosen

instead to be augmented unicorn subgraphs U +(a, b) which lie within a uniformly

bounded distance from some connected Γ-unicorn subgraph U (a′, b′).
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We proceed by first proving δ-hyperbolicity in the case when Γ contains a loop

edge, and then the loop-free case when Γ contains an odd cycle.

Proposition 3.2. Assume that Σ ̸= Σ3
0 and if Σ = Σ2

1 then Γ is not two disjoint

loop edges. If Γ contains a loop edge, then A(Σ,Γ) is uniformly δ-hyperbolic.

Proposition 3.3. If Γ is loop-free and contains an odd cycle, then A(Σ,Γ) is

uniformly δ-hyperbolic.

Observing that Γ is bipartite if and only if it is loop-free and contains no odd cycles,

we conclude the following:

Theorem 3.4. Assume that either Γ is loop-free, or Σ ̸= Σ3
0 and if Σ = Σ2

1 then

Γ is not two disjoint loop edges. If Γ is not bipartite, then A(Σ,Γ) is uniformly

δ-hyperbolic. □

3.1. Γ contains a loop edge. We first consider the case when Γ is a single loop

edge, in which case all Γ-allowed arcs share a boundary component and the usual

unicorn subgraphs suffice.

Lemma 3.5. If Γ is comprised of a single, looped edge, then {U (a, b)}a,b form

1-slim triangles in A(Σ,Γ).

Proof. Let x ∈ U (a, b), and suppose x is comprised of subarcs α′ ⊂ a, β′ ⊂ b with

x− = α′
− = a− and x+ = β′

+ = b+. Let c ∈ V (A(Σ,Γ)), and assume c is in minimal

position with x.

It suffices to find y ∈ U (a, c)∪U (b, c) disjoint from x. Without loss of generality

suppose that c last intersects x at s ∈ α′. Let y be the concatenation of the subarc

from x− to s along a and the subarc from s to c+ along c. Since c and x are in

minimal position and x+, c+ = b±, by Remark 2 y ∈ U (a, c) is Γ-allowed. y is

disjoint with x up to isotopy. □

We note that if d(a, b) = 1 then a, b are disjoint, hence U (a, b) = {a, b} has

diameter 1 and Theorem 3.1 is satisfied for ∆ = 1.

Corollary 3.6. If Γ is comprised of a single, looped edge, then A(Σ,Γ) is δ-

hyperbolic. □

In fact, it suffices that Γ contain a loop edge. We assume that Σ ̸= Σ3
0 and if

Σ = Σ2
1, then Γ is not two disjoint loop edges. Let ℓ0 ⊂ Γ be a loop edge in Γ

and recall that by Lemma 1.9 the set of exceptional vertices X2 are independent in

A(Σ,Γ). Let A′ be the metric graph obtained from A(Σ,Γ) \ X2, with the usual

graph metric, by adjoining edges of length 2 between all neighbors of a vertex v

for each v ∈ X2. Since A′ and A(Σ,Γ) are isometric outside of a collection of

disjoint uniformly bounded subsets, they are uniformly quasi-isometric. We note

that πA(Σ, ℓ0) embeds isometrically as a 1-dense subgraph in A′.

We prove that A′ is δ-hyperbolic. Let ξ : A′ → πA(Σ, ℓ0) be a choice of nearest

point projection. For a, b ∈ V (A(Σ,Γ)), let

U +(a, b) := [a, ξa] ∪ Uℓ0(ξa, ξb) ∪ [ξb, b]
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imπimπ

v ∈ X2

N(v) 2

A′

Figure 3. Obtaining A′ from A(Σ,Γ).

where e.g. [a, ξa] denotes an edge and Uℓ0 denotes the π-image in A′ of the re-

spective ℓ0-unicorn subgraph. Since π is a contraction, Lemma 3.5 implies that

triangles in {Uℓ0(ξa, ξb)}a,b are likewise 1-slim, and thus for the augmented uni-

corns U +(a, b) as well. To apply Theorem 3.1, we need only check that (I) is

satisfied:

Lemma 3.7. For any disjoint a, b ∈ V (A′), diamU +(a, b) ≤ 10.

Proof. Let w denote the boundary component in ℓ0 and a′ = ξa, b′ = ξb. Since

d(a, a′), d(b, b′) ≤ 1, a, a′ and b, b′ are disjoint up to isotopy. If both a, b ∈ πA(Σ, ℓ0),

then a′ = a and b′ = b are disjoint: Uℓ0(a
′, b′) = {a, b}. Assume not, and without

loss of generality, let b /∈ πA(Σ, ℓ0). Then ∂b ̸= {w}; orient b such that b− ̸= w. It

suffices to show that for any x ∈ Uℓ0(a
′, b′), d(x, a) ≤ 5 in A′.

Let s ∈ b ∩ x be the first intersection along b; since b, b′ are disjoint, s ⊂ a′.

Let b0 denote the subarc of b between b− and s, and let a′0 denote the subarc of

x along a′ between a′± and s. Let N be a regular neighborhood of a′0 ∪ b0 ∪ b−.
Then δ = ∂N intersects x at most once and must be essential, else Σ is an annulus:

d(x, δ) ≤ 2. Since ∂δ = {w}, δ is Γ-allowed and by Lemma 1.9 does not lie in X2:

δ ∈ V (A′). Finally, since a′ is disjoint from a, δ intersects a only if a terminates on

b−, hence at most twice. Applying Proposition 2.6, d(a, δ) ≤ 3, hence d(x, a) ≤ 5

as required. □

b
b′

a′

δ

w

Figure 4. The arc δ in the proof of Lemma 3.7.

The proof of Proposition 3.2 follows from Theorem 3.1 and that A(Σ,Γ) ≃q.i. A′.
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3.2. Γ contains an odd cycle. Assume that Γ is loop-free and contains an odd

cycle Cn of length n = 2k + 1. Fix e0 ∈ E(Cn). By Lemma 2.8, the canonical

map π : A(Σ, e0) → A(Σ,Γ) is 1-coarsely surjective. As above, let ξ : A(Σ,Γ) →
πA(Σ, e0) be a choice of nearest point projection, and for a, b ∈ V (A(Σ,Γ)), let

U +(a, b) := [a, ξa] ∪ Ue0(ξa, ξb) ∪ [ξb, b].

We verify first that triangles in {Ue0(a, b)}a,b∈V (πA(Σ,e0)) are slim in A(Σ, Cn);

since π factors through the 1-Lipschitz induced map A(Σ, Cn) → A(Σ,Γ), the

augmented unicorns U +(a, b) likewise form slim triangles in A(Σ,Γ), satisfying

(II) of Theorem 3.1.

Lemma 3.8. Triangles in {Ue0(a, b)}a,b∈V (πA(Σ,e0)) are 4-slim in A(Σ, Cn).

Proof. Let e0 = (w1, wn), and let wi denote the remaining boundary components

in Cn, ordered by adjacency. Let a, b, c ∈ V (πA(Σ, e0)), and let x ∈ Ue0(a, b). It

suffices to find y ∈ Ue0(a, c) ∪ Ue0(c, b) such that d(x, y) ≤ 4. Orient a, b, c such

that their initial (resp. terminal) points lie in w1 (resp. wn). If x = a, b, then we

may conclude with y = a, b respectively. Hence without loss of generality, let x be

represented by the concatenation of subarcs α0 ⊂ a and β0 ⊂ b such that α0 is

initial in a and β0 is terminal in b, else exchange the roles of a, b.

Assume boundary components adjacent in Cn are separated by c ∪ x, else there

exists a Cn-allowed arc disjoint from x, c and d(x, c) ≤ 2. For i /∈ {1, n}, let

Di ⊃ wi denote the closure of the complementary component of c ∪ x containing

wi, and let D1, Dn denote the closure of the union of components intersecting w1,

resp. wn. Note that the Di need not be distinct, although D̊i, D̊i+1 are disjoint by

assumption. We show the following claim, from which the result follows:

Claim 3.9. If Di ∩α0 ̸= ∅ and Di+1 ∩α0 ̸= ∅ then there exists y ∈ Ue0(a, c) such

that d(y, x) ≤ 4, and likewise for β0, b.

Proof of claim. We consider the case for α0; the other case is analogous. Fix simple

disjoint arcs ρ, δ from wi and wi+1 respectively to α0, both disjoint from c and

disjoint from x except at one endpoint; if i = 1, then we allow ρ to be the point

α0 ∩ a−. Let η′ be the Cn-allowed concatenation of ρ, δ, and the subarc of α0

between ρ and δ. Let γ0 ⊂ c denote the subarc between wn and the first intersection

with α0, or c if no such intersection exists, and let y denote the e0-unicorn formed

by concatenating an initial arc of α0 with γ0, or c if γ0 = c. We observe that

y, η′ and η′, x both intersect at most once. Applying Proposition 2.6, d(x, y) ≤
d(x, η′) + d(η′, y) ≤ 4. □

In particular, we note that α0∩D1 ̸= ∅ and β0∩Dn ̸= ∅, and in general ∂Di∩x ̸= ∅
else c is not simple, hence either Di ∩ α0 ̸= ∅ or Di ∩ β0 ̸= ∅. Since n is odd, the

hypothesis of the claim must hold for some i. □

To apply Theorem 3.1, it remains only to verify that (I) is satisfied:

Lemma 3.10. For any disjoint a, b ∈ V (A(Σ,Γ)), diamU +(a, b) ≤ 7.
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w1

D1

α0

β0
c

wi
wi+1

η′

Figure 5. The region D1; the arc η′ in the proof of the claim.

Proof. Let wi denote the boundary components in Cn, as in the proof of Lemma 3.8.

It suffices to show that for any x ∈ Ue0(ξa, ξb), d(x, {a, b}) ≤ 3. Let a′ = ξa, b′ = ξb,

oriented such that their initial (resp. terminal) points lie in w1 (resp. wn). We

assume x ̸= a′, b′, else d(x, {a, b}) ≤ 1. Hence, without loss of generality, let x be

represented by the concatenation of subarcs α′
0 ⊂ a′ and β′

0 ⊂ b′ such that α′
0 is

initial in a′ and β′
0 is terminal in b′, else exchange the roles of a, b.

For i ̸= {1, n}, let ρ′i be the shortest path from wi to X = a ∪ x ∪ b, and let p′i
denote the point of intersection ρi∩X. If p′i ∈ a, b, let ρi be the concatenation of ρ′i
with the shortest subarc between p′i and x along a, b respectively; else let ρi = ρ′i.

Let pi denote the endpoint of ρi along x, and note that if pi ∈ α′
0, then since a, a′

are disjoint pi ∈ b ∪ α′
0 and ρi ∩ X ⊂ a′ ∪ b. a, b are likewise disjoint, hence ρi is

disjoint from a, and analogously if pi ∈ β′
0 then ρi is disjoint from b. Suppose that

p2 ∈ α′
0, and let δ be the concatenation of ρ2 with the subarc between p2 and c1

along α′
0. Since δ joins boundary components w1, w2 adjacent in Cn, δ is Γ-allowed;

moreover, δ is disjoint up to isotopy from a and x, hence d(x, a) = 2. Thus assume

p2 /∈ α′
0 and, by a similar argument, pn−1 /∈ β′

0.

We claim that if pi, pi+1 ∈ α′
0, then there exists a Γ-allowed arc δ such that

δ is disjoint from a and intersects x at most once, and likewise for β′
0 and b. In

particular, in the case for α′
0 let δ be the concatenation of ρi, ρi+1, and the subarc

along α′
0 between pi, pi+1; δ satisfies the claim, and the remaining case for β′

0 is

analogous. Finally, since n is odd and p2 ∈ β′
0 and pn−1 ∈ α′

0, the hypotheses

of the claim are satisfied for some i. Applying Proposition 2.6, d(x, {a, b}) ≤
d(x, [δ]) + d([δ], {a, b}) ≤ 3. □

Proposition 3.3 follows from Theorem 3.1.

4. (Σ,Γ) for which A(Σ,Γ) is not hyperbolic

We aim to show the converse of Theorem 3.4, namely that, outside of some low-

complexity cases, if Γ is bipartite then A(Σ,Γ) is not hyperbolic. In the case that Γ

is bipartite we obtain two independent Z-actions with positive translation length,

each supported on a disjoint witness, and thereby a quasi-isometric embedding

Z2 ↪→ A(Σ,Γ). In considering such actions, we note that the usual mapping class

group does not act upon A(Σ,Γ) in general: if Γ contains a non-loop edge and is

not complete, or if Γ contains a loop edge but not every loop edge, then there exists
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a′

b′ a

b
wnw1

wi

wi+1

δ

p′i
pi+1

Figure 6. The arc δ in the proof of Lemma 3.10 when pi, pi+1 ∈ α′
0.

a mapping class whose induced permutation on π0(∂Σ) = V (Γ) does not preserve

adjacency in Γ. We make the following definition:

Definition 4.1. Let Mod(Σ,Γ) ≤ Mod(Σ) denote the subgroup of mapping classes

φ ∈ Mod(Σ) whose induced map φ∗ : π0(∂Σ) → π0(∂Σ) defines a graph automor-

phism on Γ.

Since Mod(Σ,Γ) maps Γ-allowed arcs to Γ-allowed arcs and preserves disjoint-

ness, the following statement is immediate:

Proposition 4.2. Mod(Σ,Γ) acts simplicially on A(Σ,Γ). □

Remark 4.3. The pure mapping class group PMod(Σ) is a subgroup of Mod(Σ,Γ).

4.1. Subsurface projection. For a witness subsurface W ⊂ Σ, we may restrict

the usual definitions of subsurface projection for arc graphs to the prescribed arc

graph A(Σ,Γ). In particular:

Definition 4.4. Let W ⊂ Σ be a Γ-witness. Then let σW = ρW ◦ π : A(Σ,Γ) →
A(W ) denote the subsurface projection to W , where π : A(Σ,Γ) → A(Σ) is the

canonical inclusion and ρW : A(Σ) → A(W ) is the usual subsurface projection.

Remark. We regard ρW as a choice of true function instead of a coarse function; we

note for a ∈ A(Σ), the choice of image ρW (a) ∈ A(W ) is canonical up to uniformly

bounded diameter D. Thus ρW is coarsely 1-Lipschitz, and likewise since π is 1-

Lipschitz, σW is coarsely 1-Lipschitz, i.e. dA(W )(σW (a), σW (b)) ≤ dA(Σ,Γ)(a, b)+2D

for a, b ∈ V (A(Σ,Γ)).

Since σW is coarsely 1-Lipschitz and coarsely equivariant with respect to home-

omorphisms of pairs (Σ,W ) → (Σ,W ), we have the following:

Lemma 4.5. LetW ⊂ Σ be a Γ-witness for which there exists a loxodromic element

φ ∈ PMod(W ) acting on A(W ). Then any extension φ̃ ∈ Mod(Σ,Γ) acts with

positive translation length on A(Σ,Γ). □

For a witnessW ⊂ Σ, we are interested in pseudo-Anosov (without loss of generality,

pure) mapping classes that act loxodromically on A(W ) and furnish extensions to

Mod(Σ,Γ) with positive translation length. It is for this reason we requireW ̸= Σ3
0.
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We remark that for Γ′ ⊊ Γ, the canonical inclusion π : A(Σ,Γ′) → A(Σ,Γ) is

often not a quasi-isometry. It suffices that the sets of Γ′-witnesses and Γ-witnesses

are distinct:

Proposition 4.6. Let Γ′ ⊊ Γ and assume that A(Σ,Γ) is connected. If there

exists a subsurface W that is a Γ′-witness but not a Γ-witness, then π : A(Σ,Γ′) →
A(Σ,Γ) is not a quasi-isometric embedding.

Proof. Fix a Γ-allowed arc a disjoint from W . Let φ be a pseudo-Anosov mapping

class in PMod(W ), and let φ̃ be an extension of φ to Σ by identity on Σ\W . Since

φ∗ acts loxodromically on A(W ), by Lemma 4.5 φ̃∗ acts with positive translation

length on A(Σ,Γ′). Thus for any b ∈ V (A(Σ,Γ′)), {φ̃k
∗(b)} has infinite diameter

in A(Σ,Γ′), hence if π is a quasi-isometric embedding then likewise {πφ̃k
∗(b)} =

{φ̃k
∗(πb)} has infinite diameter in A(Σ,Γ), where the equality follows from the

naturality of π. But a is fixed by φ̃, hence diam{φ̃k
∗(πb)} = 2d(a, πb) < ∞, a

contradiction. □

Example 4.7. Suppose that χ(Σ) ≤ −3 and Γ is loop-free. Then there is a Γ′-

witness subsurface W ⊂ Σ that is not a witness for A(Σ,Γ), hence π is not a

quasi-isometry. Let e ∈ E(Γ) \ E(Γ′), fix a (non-separating) e-allowed arc a and

a regular neighborhood N ⊃ a ∪ ∂a, and let W = Σ \ N . Since χ(N) = −1 and

χ(W ) = χ(Σ) + χ(N) ≤ −2, ∂W is an essential simple closed curve and W is

essential; moreover, W ̸∼= Σ3
0. N ∩ ∂Σ = ∂a = V (e) and e /∈ Γ′, hence there are no

Γ′-allowed arcs in N = Σ \W . W is a Γ′-witness disjoint from a ∈ V (A(Σ,Γ)). //

4.2. Disjoint witness subsurfaces. We show that outside of some low-complexity

cases, bipartite Γ is equivalent to the existence of distinct, disjoint witnesses Wi.

Lemma 4.8. Suppose that χ(Σ) ≤ −3 and if Σ = Σn+1
0 then Γ is not a n-pointed

star. Then Γ is bipartite if and only if there exist two disjoint, distinct Γ-witnesses.

Proof. We first prove the reverse direction. Suppose that there exist two disjoint

Γ-witnesses, W1,W2 ⊂ Σ. Let Ci,j ⊂ π0(∂Σ) denote the boundary components

of Σ contained in the j-th complementary component Ci,j of Wi. Since Wi is

essential, each Ci,j must be a loop-free, independent set in Γ, else there exists a Γ-

allowed arc in Ci,j disjoint from Wi. Let W1 = π0(∂W1)∩ π0(∂Σ) and observe that

V (Γ) = W1 ⊔
⊔

j C1,j . Since W1,W2 are disjoint and connected, each lies within a

unique complementary component of the other: without loss of generality, assume

W1 ⊂ C2,1 andW2 ⊂ C1,1, and observe thatW1∪
⋃

j ̸=1 C1,j is connected and disjoint

fromW2 ⊂ C1,1, hence likewise lies in C2,1 ⊃W1. Then W1,
⋃

j ̸=1 C1,j ⊂ C1,1, hence

D = W1 ∪
⋃

j ̸=1 C1,j is independent in Γ and C1,1 ⊔D = V (Γ) partitions V (Γ) into

two independent sets.

Conversely, suppose that V (Γ) may be partitioned into two independent sets

X1, X2, and without loss of generality assume both are non-empty. Moreover, we

may assume |X1| = 1 only if |X2| = 1, and |X2| = 1 only if Γ is an n-pointed

star with center in X2, else add any isolated vertices to X2. We first show there

is an essential simple closed curve separating X1, X2. By a change of coordinates
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W1

W2 C1,3 = C2,2

C1,1

C1,2

C2,1

Figure 7. Disjoint witnesses and the collections of boundary com-

ponents Ci,j .

argument, there is a simple closed curve ζ ⊂ Σ separatingX1, X2; let Z1 ⊃ X1, Z2 ⊃
X2 denote its complementary components. ζ is not essential if and only if it is

peripheral if and only if (exactly) one of Z1, Z2 is an annulus. By our assumptions

on X1, X2, in either case |X2| = 1 and Γ is an n-pointed star, hence Σ has genus.

Fix a subsurface Z ′
2
∼= Σ2

1 containing X2 and one genus. Let ζ ′ = ∂Z ′
2 \ ∂Σ and

Z ′
1 = Σ \ Z ′

2. Then ζ ′ is a simple closed curve separating X1, X2 and χ(Z ′
1) =

χ(Σ) − χ(Z ′
2) = χ(Σ) + 2 ≤ −1: neither of the complements of ζ ′ are annular,

hence ζ ′ is essential. Up to replacing ζ with ζ ′, assume ζ is essential.

Since χ(Z1) + χ(Z2) = χ(Σ) ≤ −3, at least one of χ(Zi) ≤ −2. Assume that

χ(Z1) ≤ −2 and let W1 = Z1 and W2 a closed annular neighborhood of ζ; since

χ(W1) ≤ −2, W1 ̸= Σ3
0. Thus for eitherWi, Wi is an essential non-pants subsurface

and ζ is parallel to a component of ∂Wi, hence Wi separates X1 and X2: any Γ-

allowed arc must intersect Wi. W1,W2 are homotopically disjoint and distinct

Γ-witnesses. □

We conclude by adapting a well known fact (see [MS13, Lem. 5.9]) to our setting:

Proposition 4.9. If A(Σ,Γ) admits two disjoint, distinct Γ-witnesses, then A(Σ,Γ)

is not δ-hyperbolic and in particular there is a quasi-isometric embedding Z2 →
A(Σ,Γ).

In particular, it suffices that the witnesses furnish commuting Z actions (by exten-

sions of pseudo-Anosovs) with non-zero translation lengths. We omit the proof.

The main theorem of this section then follows immediately from Lemma 4.8 and

Proposition 4.9:

Theorem 4.10. Suppose that χ(Σ) ≤ −3 and if Σ = Σn+1
0 then Γ is not a n-pointed

star. If Γ is bipartite, then A(Σ,Γ) is not δ-hyperbolic. □

5. Sporadic cases

Assuming χ(Σ) ≤ −1, E(Γ) ̸= ∅, and Σ ̸= Σ3
0, we enumerate the low complexity

cases not addressed in the preceding sections:

(i) Infinite diameter. Since Σ ̸= Σ3
0, there exists a pseudo-Anosov class in

PMod(Σ) acting loxodromically on A(Σ), hence A(Σ) is infinite diameter

and by Theorem 2.9 likewise is A(Σ,Γ). //
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(ii) Connectivity and δ-hyperbolicity. Theorem 2.7 implies the connectivity of

A(Σ,Γ) except when Σ = Σ2
1 and Γ is two disjoint loop edges. Similarly, if Γ

is not bipartite then Theorem 3.4 implies δ-hyperbolicity for A(Σ,Γ) except

when Σ = Σ2
1 and Γ is two disjoint loop edges. We show connectedness and

δ-hyperbolicity in this case in Lemma 5.2.

(iii) Non-hyperbolicity. If Γ is bipartite, then Theorem 4.10 implies that A(Σ,Γ)

is non-δ-hyperbolic unless χ(Σ) ≥ −2 or Σ = Σn+1
0 and Γ is a n-pointed star.

We show δ-hyperbolicity in the latter case in Section 5.2. For the former, it

remains to consider only if Σ = Σ4
0 or if Σ = Σ2

1 and Γ is a non-loop edge; in

the second case, we show δ-hyperbolicity in Lemma 5.3.

If Σ = Σ4
0, then A(Σ,Γ) is a full subgraph of A(Σ4

0), which is quasi-

isometric to the Farey graph hence a quasi-tree; A(Σ,Γ) is likewise a quasi-

tree and thus δ-hyperbolic. //

Collecting the results for these sporadic cases with the general results in Sec-

tions 2, 3, and 4, we have shown Theorem 1.2:

Theorem 1.2. Assume that χ(Σ) ≤ −1, E(Γ) ̸= ∅, and Σ ̸= Σ3
0. Then A(Σ,Γ) is

connected and has infinite diameter. □

We note that if Σ = Σn+1
0 and Γ is a n-pointed star with center c, then every witness

subsurface must contain c: Σ does not admit disjoint Γ-witnesses. Similarly, if

Σ = Σ4
0 or Σ2

1, then Σ does not admit two disjoint, distinct Γ-witnesses that are

not Σ3
0. Hence we conclude the following, proving Theorems 1.3 and 1.6:

Theorem 5.1. Assume that χ(Σ) ≤ −1, E(Γ) ̸= ∅, and Σ ̸= Σ3
0. Then

(i) A(Σ,Γ) is (uniformly) δ-hyperbolic if and only if Σ does not admit two dis-

tinct, disjoint Γ-witnesses.

In particular, if χ(Σ) ≥ −2 or if Σ = Σn+1
0 and Γ is a n-pointed star then A(Σ,Γ)

is δ-hyperbolic. Outside of these sporadic cases, (i) is equivalent to the following:

(ii) A(Σ,Γ) is (uniformly) δ-hyperbolic if and only if Γ is not bipartite. □

We conclude by addressing the cases when Σ = Σ2
1 and Γ is either two loop edges

or a non-loop edge, and when Σ = Σn+1
0 and Γ is a n-pointed star.

5.1. Σ = Σ2
1 and Γ is two loop edges or a non-loop edge.

Lemma 5.2. Suppose that Σ = Σ2
1 and Γ is two disjoint loop edges. Then A(Σ,Γ)

is connected and δ-hyperbolic.

Proof. Let ℓ1, ℓ2 denote the two loop edges in Γ, and let wi denote the boundary

component in ℓi. Let πi : A(Σ, ℓi) → A(Σ,Γ) be the respective canonical map;

note that imπ1, imπ2 partition V (A(Σ,Γ)). We show A(Σ,Γ) is the graph prod-

uct of A(Σ, ℓ1) and a single, non-loop edge, hence quasi-isometric to A(Σ, ℓ1): in

particular, A(Σ,Γ) is obtained from A(Σ, ℓ1)⊔A(Σ, ℓ1), with edges added between

pairs of corresponding vertices. Since A(Σ, ℓ1) is connected and δ-hyperbolic by

Proposition 2.3 and Corollory 3.6 respectively, the claim follows.

We note that each arc a ∈ imπi is adjacent to exactly one arc a′ ∈ imπ3−i. In

particular, if e.g. a is a ℓ1-allowed arc, then cutting along a we obtain a three-holed
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sphere Σ′ = Σ3
0: there exists exactly one essential simple arc a′ ⊂ Σ′ with endpoints

on w2, up to isotopy. Let τ : V (A(Σ, ℓ1)) → V (A(Σ, ℓ2)) be the bijection sending

each ℓ1-allowed arc a to its unique disjoint ℓ2-allowed arc a′. Since each πi is a

graph inclusion, it suffices to show that τ is an isometry. In particular, it is enough

to find a homeomorphism of pairs (Σ, w1) → (Σ, w2) that induces τ .

For convenience, observe that we can realize A(Σ,Γ) by replacing the boundary

components wi of Σ with marked points pi on the torus. Fix a flat metric on

Σ ∼= R2/Z2 such that p1 = (0, 0) and p2 = (θ, 0) for some irrational θ ∈ (0, 1), and

define the homeomorphism ξ : (a, b) 7→ (a + θ, b); we note that ξ : p1 7→ p2. For

any ℓ1-allowed arc a, we may assume a is a geodesic loop with non-zero slope and

basepoint p1, hence ξa is a geodesic loop with basepoint p2 disjoint from a. Thus

ξa is ℓ2-allowed and by uniqueness ξa = a′: ξ induces the map τ on V (A(Σ, ℓ1)),

as desired. □

Lemma 5.3. Suppose that Σ = Σ2
1 and Γ is a non-loop edge. Then A(Σ,Γ) is

δ-hyperbolic.

Proof. As in Lemma 5.2, without loss of generality we may replace Σ with Σ1,2,

i.e. replacing boundary components with marked points q̄1, q̄2 on the torus. Let

Σ′ = Σ1,1 with marked point q0; fix primitive generators α, β ∈ π1(Σ
′, q0) and

a metric such that α, β are geodesic. Let p : Σ → Σ′ be the normal covering

corresponding to the subgroup ⟨2α, β⟩ < π1(Σ
′, q0), preserving marked points. We

will show that p defines a quasi-isometry p∗ : V (A(Σ,Γ)) → V (A(Σ′, ℓ0)), where

ℓ0 is the loop edge on the marked point q0 and p∗ maps γ 7→ [pγ̂], where γ̂ ∈ γ is

the unique (simple) geodesic representative. Since A(Σ′, ℓ0) = A(Σ1
1)

∼= C(Σ1) is

δ-hyperbolic, we conclude.

We first verify that p∗ is well defined. Let γ ∈ V (A(Σ,Γ)); without loss of

generality, assume γ− = q̄1. Since p is Π-injective on st(q̄1) ⊂ Π(Σ), pγ̂ is essential

and we need only check that pγ̂ is simple. In particular, we note that V (A(Σ′, ℓ0))

corresponds bijectively with primitive elements in π1(Σ
′, q0); let a, b such that [pγ̂] =

aα + bβ ∈ π1(Σ
′, q0), and assume that pγ̂ is not simple, or equivalently, that [pγ̂]

is not primitive. Since pγ̂ does not lift to a loop in Σ, a must be odd, hence

gcd(a, b) = k ≥ 3. Let ω ∈ π1(Σ
′, q0) such that k · ω = [pγ̂], hence γ̂ is the

concatenation of k lifts of ω̂. Since there exist exactly two distinct lifts of ω̂, at

least two lifts coincide and γ̂ is not simple, a contradiction.

For the lower quasi-isometry bound, we observe that for any η, ν ∈ im p∗, the

lifted arcs in p−1
∗ ({η, ν}) are pairwise disjoint. Therefore any path with vertices in

im p∗ ⊂ V (A(Σ′, ℓ0)) lifts to a path in A(Σ,Γ) and p∗ is non-contracting. For the

upper quasi-isometry bound, it suffices to show that if γ, ρ are disjoint Γ-allowed

arcs, then d(p∗γ, p∗ρ) ≤ 2. We first consider the special case that γ = ᾱ is a lift of

α with ᾱ− = q̄1. Let ψ be the deck transformation permuting q̄1, q̄2. If α, p∗ρ are

not disjoint, then ᾱ, ρ are disjoint but ᾱ, ψρ are not. Thus p∗ρ = α+mβ for some

m ̸= 0, hence p∗ᾱ = α and p∗ρ are both disjoint from β: the claim is shown.

We consider the induced action of Mod(Σ′; q0) ∼= SL2(Z) on π1(Σ
′, q0); let

H = ⟨2α, β⟩ < π1(Σ
′, q0), and let stab(H) < Mod(Σ′; q0) denote the subgroup of
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mapping classes φ such that φ∗(H) = H. V (A(Σ′, ℓ0)) corresponds to the disjoint

union of the sets of primitive elements in H and Hc := π1(Σ1,1, q0) \ H respec-

tively, and we note that stab(H) acts by isometries on both sets. Moreover, im p∗
is precisely the set of primitive elements in Hc. To show that p∗ is 2-Lipschitz in

general, it suffices to show that stab(H) acts transitively on im p∗. In particular, if

γ is a Γ-allowed arc in Σ, then let φ ∈ stab(H) such that φ : p∗γ 7→ α. Then there

exists a lift φ̄ : Σ → Σ such that φ̄ : γ̂ → ᾱ; noting that φ̄ acts isometrically on

A(Σ,Γ) and p∗-intertwines the isometric action of φ on A(Σ′, ℓ0), we reduce to the

special case above. Finally, we verify transitivity. Let ω = aα + bβ ∈ Hc; we note

that a, b are coprime and a is odd. Since a, b are coprime, there exist c, d ∈ Z such

that ad− bc = 1. Moreover, we may choose c to be even, else replace c with c+ a

and d with d+ b. Let

φ =

(
a c

b d

)
∈ Mod(Σ′; q0) ∼= SL2(Z),

noting that det(φ) = ad− bc = 1 and that since a is odd and c even, φ ∈ stab(H).

φ(α) = aα+ bβ = ω, hence maps α 7→ ω as desired.

It remains only to check that p∗ is coarsely surjective. We show that stab(H)

acts transitively on primitives in H, hence stab(H) \ V (A(Σ, ℓ0)) has exactly two

vertices, one of which has fiber im p∗: im p∗ is 2-coarsely dense in V (A(Σ, ℓ0)).

Let ν = cα + dβ ∈ H be primitive, hence c is even and there exist a, b such that

ad− bc = 1. Thus ad, and likewise a, must be odd. Let

ξ =

(
a c

b d

)
.

As above, we may verify that ξ ∈ stab(H) and ξ : β 7→ ν. □

5.2. Σ = Σn+1
0 and Γ is a n-pointed star, n ≥ 3. The case when Σ is a (n+ 1)-

holed sphere and Γ is a n-pointed star is analogous to the ray graph in [Bav16], but

rather than a Cantor set of punctures we consider only finitely many. We reproduce

Bavard’s argument for δ-hyperbolicity below, suitably simplified for our purposes.

Lemma 5.4. Let Σ = Σn+1
0 and Γ a n-pointed star with center c. Then A(Σ,Γ)

is quasi-isometric to A(Σ, ℓ0), where ℓ0 is a loop edge on c.

Proof. It suffices to define a quasi-isometry ξ : V (A(Σ,Γ)) → V (A(Σ, ℓ0)). Given

an isotopy class of Γ-allowed arcs a ∈ V (A(Σ,Γ)), we will always assume an ori-

entation such that a− = c. Let N be a regular neighborhood of α ∪ a+ for α ∈ a

a choice of representative; let â denote the isotopy class of ∂N . Since n ≥ 3, â is

essential; ∂â = {c}, hence â is an isotopy class of ℓ0-allowed arcs. Note that â is

independent of the choice of α and N , and let ξ : a 7→ â.

If α ∈ a, β ∈ b are disjoint Γ-allowed arcs, then we may choose regular neighbor-

hoods of α∪a+ and β∪b+ respectively such that i(â, b̂) ≤ 2. Thus by Proposition 2.6

d(ξa, ξb) ≤ 3, and in general ξ is 3-Lipschitz. For the lower quasi-isometry bound,

consider a, b ∈ V (A(Σ,Γ)) such that d(ξa, ξb) = m, and let u1 = ξa, u2, . . . , um = ξb

be distinct ℓ0-allowed arcs forming a geodesic path in A(Σ, ℓ0). We construct a path
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v1 = a, v2, . . . , vm = b of Γ-allowed arcs in A(Σ,Γ), hence d(a, b) ≤ d(ξa, ξb), as

desired.

We note that each ui separates Σ into two complementary components home-

omorphic to Σk
0,1,Σ

n−k
0,1 respectively, and that for i ̸= 1,m, both ui−1, ui+1 must

lie in the same component: since (ui) is geodesic, ui−1, ui+1 cannot be adjacent in

A(Σ, ℓ0), hence must intersect. Let Si ⊂ Σ denote the complementary component

of ui that contains ui−1 or ui+1; let S′
i denote the the other component, which

contains neither. We note that Si must contain at least two boundary components

of Σ (that are not c), else every ℓ0-allowed arc in Si belongs to ui and ui−1 = ui
or ui+1 = ui, a contradiction since each ui is distinct. Similarly, S′

i contains at

least one boundary component di ̸= c, since ui is essential; we moreover claim that

S′
i, S

′
i+1 are disjoint, else e.g. ui = ∂S′

i ⊂ S′
i+1, a contradiction with our choice of

S′
i+1. Finally, choose vi to be an arc between c and di in S′

i. Since S′
i is disjoint

from S′
i+1, vi is disjoint from vi+1, and note that we may choose v1 = a and vm = b

since the complementary component of u1 containing a contains only one boundary

component of Σ, hence a ̸⊂ S1, and likewise b ̸⊂ Sm. (vi) is the desired path.

Coarse surjectivity follows from a similar argument: as above, a complementary

component S of an (essential) ℓ0-allowed arc u must contain at least one component

d ̸= c of ∂Σ. Any choice of simple arc α from c to d in (the interior of) S is Γ-

allowed and has a regular neighborhood N ⊂ S. Hence a = [α] ∈ V (A(Σ,Γ)) and

ξa = â is disjoint from u: ξ is 1-coarsely surjective. □

By Corollary 3.6 A(Σ, ℓ0) is δ-hyperbolic, hence we may conclude that A(Σ,Γ)

is likewise δ-hyperbolic. //
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